Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (2): 205-210    DOI:
论文 Current Issue | Archive | Adv Search |
Modelling of dealumination of silicon-aluminum molecular sieves
MA Guangwei;  XIE Zaiku
Shanghai Research Institute of Petrochemical Technology; SINOPEC. Shanghai 201208
Cite this article: 

MA Guangwei XIE Zaiku. Modelling of dealumination of silicon-aluminum molecular sieves. Chin J Mater Res, 2009, 23(2): 205-210.

Download:  PDF(853KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dealumination course of framework of Silicon-Aluminum molecular sieves (SAMS) was simplified as the diffusion of aluminium atoms in the framework as well as the formation and migration of vacancy sites. Based on this simplification in this paper, and the instantaneous concentration of aluminum atoms have been determined as a function of time and location according to Fick's Second Law. The critical parameters affecting the dealumination process was also discussed. The accuracy of the formulae is verified as the calculation results agree with the ratio of silicon to aluminum in Mordenite and ZSM-5 framework measured by XPS and infrared spectra and 27Al-NMR.

Key words:  inorganic non-metallic materials      molecule sieves dealuminum      diffusion      the second laws of Filker      balanced density of the vacancy      ration of silicon and aluminum on skeleton     
Received:  23 September 2008     
ZTFLH: 

TB321

 
Fund: 

Supported by National Basic Research Program of China No.2003CB615804 and the Unite Foundation of National Nature Science Foundation of China and SINOPEC No.20736011.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I2/205

1 Graham J. Hutchings, Andy Burrows, Colin Rhodes, Dealumination f Mordenite catalysts using a low concentration f steam, Journal Chemical Society, Faraday Transaction, 3, 3593(1997) 2 YananWang, Xinwen Guo, Chen Zhang, Influence of calcinations emperature on the stability of fluorinated nanosized ZSM-5 in the methylation of biphenyl, Catalysis etters, 107, 209(2006) 3 Johan C.Groen, Louk A.A.Peffer, Pore size determination n modified micro-and mesoporous material, Microporous esoporous Material, 60, 1(2003) 4 S.Sen, R.R.Wusirika, R.E.Youngman, High temperature hemal expansion behavior of HZSM–5 zeolites, Microporous esoporous Material, 87, 217(2006) 5 MA Guangwei, TENG Jiawei, XIE Zaiku, Modelling of ealumination of silicon-aluminum molecular sieves, Material cience & Technology, 25(6), 432(2009) 6 CHEN Jinnan, Theory of transfer process, (Beijing, hemical Industry Press, 2004) p.278 (陈晋南,  传递过程原理, (北京, 化学工业出版社, 2004) p.278) 7 XIA Guangrong, FENG Quanli, Similitude of transfer henomenon, (Beijing, SINOPEC Press, 1997) p.143 (夏光榕, 冯权莉,  传递现象相似 (北京, 中国石化出版社, 1997) p.143) 8 T.K.Xiuwude, R.L.Pikefute, Science of quality transfer, Beijing, Chemical Industry Press, 1988) p.78 (T.K.修武德, R.L.皮克福特,   传质学 (北京, 化学工业出版社, 1988) p.78) 9 ZHAO Zhenguo, Application of adsorptive theory, (Beijing, hemical Industry Press, 2005) p.102 (赵振国, 吸附作用应用原理 (北京, 化学工业出版社, 2005) p.102) 10 YANG Sanglin, ZHANG Yu, GUI Tailong, Conspectus of aterial physical, (Harbin, Harbin University of Industry Press, 1999) p.56 (杨尚林, 张宇, 桂太龙,   材料物理导论 (尔滨, 哈尔滨工业大学出版社, 1999) p.56) 11 ZHAO Pin, Xie Fuzhou, Sun Wenshan, Base of Material cience, (Harbin, Harbin University of Industry Press, 1999) p.25 (赵品, 谢辅洲, 孙文山,  材料科学基础 (哈尔滨, 哈尔滨工业大学出版社, 1999) p.25) 12 FU Xiancai, SENWenxia, YAO Tianyang, Physical chemistry,  4(Nanjing, Najing University Press, 1990) p.481 (傅献彩, 沈文霞, 姚天扬,  物理化学, 第四版 (北京,高等教育出版社, 000) p.481) 13 Wladimir Reschetilowski, Wolf-Dietrich Einicke, Michael usek. Magic-angle-spinning nuclear magnetic resonance and adsorption studies of dealumination and realumination  of deolite ZSM-5, Applied Catalysis, 56, 15(1989) 14 T.Blasco, A.Corma, Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J. Catal., 237, 267(2006) 15 T.Sano, Rie Tadenuma, Kazuo Soga, Realumination of dealuminated HZSM-5 zeolites by acid treatment. Chem. Cmmun., 1945(1997) 16 Zhao Guoliang, Teng Jiawei, Xie Zaiku, Effect of phosphorus  on ZSM-5 catalyst for C4-olefin cracking reactions to  produce propylene, J.Catal., 248, 29(2007) 17 Ayyamperumal Sakthivel. Acidity and catalytic behaviors of  ordered mesoporous aluminosilicate materials containing zeolite building units. Catalysis Letters, 108, 173(2006) 18 Xue Bin, Catalytic activity of bronsted acid sites in zeolites: intrinsic activity, rare-limiting step, and influence of the locai structure of the acid sites. J. Catal., 244, 163(2006) 19 Hisahiro Einaga, Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides. J. Catal, 243, 446(2006) 20 MA Guangwei, XIAO Jingxian, XIE Zaiku, Effect of water vapour on the acidity of ZSM-5 used for catalytic cracking of naphtha to manufacture ethylene and propylene, China Petroleum Processing & Petrochemical Technology, 4, 49(2008)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!