Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (2): 123-126    DOI:
论文 Current Issue | Archive | Adv Search |
Optimized solvent-thermal preparation of NaYF4 :Yb3+,  Er3+  up-conversion nanoparticles for application in solar cells
LIU Yongjuan1;2;  ZHANG Xiaodan1;  WANG Dongfeng1;  ZHANG Cunshan2;  ZHAO Ying1
1.Institute of Photo-electronics Thin Film Devices and Technique of Nankai University; Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin; Key Laboratory of Photo-electronic Information Science and Technology (Nankai University; Tianjin University); Ministry of Education; Tianjin 300071
2.College of Information Engineering; Hebei University of Technology; Tianjin 300130
Cite this article: 

LIU Yongjuan ZHANG Xiaodan WANG Dongfeng ZHANG Cunshan ZHAO Ying. Optimized solvent-thermal preparation of NaYF4 :Yb3+,  Er3+  up-conversion nanoparticles for application in solar cells. Chin J Mater Res, 2009, 23(2): 123-126.

Download:  PDF(789KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanoparticles of Yb3+,  Er3+-codoped sodium yttrium fluoride were prepared by solventthermal method. The properties of the prepared materials were characterized. The up-conversion luminescent properties of the NaYF4 : Yb3+, Er3+ nanoparticles were investigated. The effect of deionized water and ethanol as reaction medium on the performance of the up-conversion materials was studied. The results showed that the up-conversion nanoparticles had relatively high up-conversion effect when ethanol was used as reaction medium and simultaneously ethylenediaminetetraacetic acid (EDTA) was also added. The up-conversion phosphors emit visible light which could be well utilized by solar cells.

Key words:  inorganic non-metallic materials      solvent      deionized water      ethanol      ethylenediaminetetraacetic acid (EDTA)      up-conversion     
Received:  25 June 2008     
ZTFLH: 

TB321

 
Fund: 

Supported by National Key Basic Research and Development Program of China No.2006CB202602 and No.2006CB202603, National Natural Science Foundation of China No.60506003, National Hi-Tech Research and Development Program of China No.2007AA05Z436, the Program for New Century Excellent Talents in University of China NCET-05-0227, the Starting Project of Nankai University No.J02031, and International Cooperation Project between China-Greece Government No.2006DFA62390.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I2/123

1 D.C.Nguyen, G.E.Faulker, M.Dulick, Blue-green (450) upconversion Tm3+:YLFlaser, Appl. Opt., 28(17), 3553(1989)
2 F.Duclos, P.Unqubart, Thulium-doped ZBLAN blue upconversion fibre laser: theory, J. Opt. Soc. Am. B, 12(4), 709(1995)
3 S.S.Andrea, de Camargo, J.F.Possatto, Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics, Solid State Communications, 137(1-2), 1(2006)
4 P.V.dos Santos, M.T.de Araujo, A.S.Gouveia-Neto, Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass, Appl. Phys. Lett., 73(5), 578(1998)
5 E.A.Dowing, L.Hesselink, R.M.Macfarlane, Solid-state three dimensional computer display, IEEE Service Center, Piscataway, NJ, USA, 8(3), 6(1994)
6 E.A.Dowing, L.Hesselink, R.M.Macfarlane, A Laser diode drive, three color, solid state 3-D display, Optical Society of America, 9(8), 89(1996)
7 G.S.Yi, H.C.Lu, S.Y.Zhao, Y.Ge, W.J.Yang, D.P.Chen, L.H.Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors, Nano. Lett., 4(11), 2191(2004)
8 L.Y.Wang, R.X.Yan, Z.Y.Huo, L.Wang, J.H.Zeng, J.Bao, X.Wang, Q.Peng, Y.D.Li, Fluorescence resonant energy transfer biosensor basedon upconversion-luminescent nanoparticles, Angew. Chem. Int. Ed, 44(37), 6054(2005)
9 S.F.Lim, R.Riehn, W.S.Ryu, N.Khanarian, C.K.Tung, D.Tank, R.H.Austin, In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans, Nano. Lett., 6(2), 169(2006)
10 K.W.Kramer, D.Biner, G.Frei, H.U.Gudel, M.P.Hehlen, S.R.Luthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors, Chem. Mater., 16(7), 1244(2004)
11 J.F.Suyver, J.Grimm, K.W.Kramer, H.U.Gudel, Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,  Yb3+,   Journal of Luminescence, 114(1), 53(2005)
12 JIN Xin, ZHANG Xiaodan, LEI Zhifang, XIONG Shaozhen, SONG Feng, ZHAO Ying, Synthesis and properties of nanocrystal up-converting materials based on thin film solar cells, Acta Phys. Sin, 57(7), 4580(2008)
(金鑫, 张晓丹, 雷志芳, 熊绍珍, 宋峰, 赵颖, 薄膜太阳电池用纳米上转换材料制备及其特性研究, 物理学报,  57(7), 4580(2008))
13 Y.Fujishiro, H.Ito, T.Sato, A.Okuwaki, Synthesis of monodispersed LaPO4 particles using the hydrothermal reaction of an La(edta)-chelate precursor and phosphate ions, J. Alloys Compounds, 252, 103(1997)
14 F.Luo, C.J.Jia, W.Song, L.P.You, C.H.Yan, Chelating ligand-mediated crystal growth of cerium orthovanadate, Cryst. Growth Des., 5(1), 137(2005)
15 L.Y.Wang, Y.D.Li, Green upconversion nanocrystals for DNA detection, Chem. Commun., 16(24), 2557(2006)
16 Y.Wei, F.Q.Lu, X.R.Zhang, D.P.Chen, Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter, J. Alloy Compd., 427, 333(2007)
17 C.Droz, Thin film microcrystalline silicon layers and solar cells: microstructure and electrical performances, PhD Thesis, University of Neuchatel(2003)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!