Please wait a minute...
Chin J Mater Res  2008, Vol. 22 Issue (6): 599-605    DOI:
论文 Current Issue | Archive | Adv Search |
Oxidation characteristic of ferritic–martensitic steel T91 in water–vapour atmosphere
 ZHANG Duqing1;3; XU Jingjun2; ZHAO Guoqun1†; GUAN Yanjin1; LI Meishuan2
1.School of Materials Science & Engineering; Shandong University; Jinan 250061
2.Institute of Metal Research Chinese Academy of Sciences; Shenyang; 110016
3.Shandong Electric Research Institute; Jinan; 250013
Cite this article: 

ZHANG Duqing; XU Jingjun; ZHAO Guoqun; GUAN Yanjin; LI Meishuan. Oxidation characteristic of ferritic–martensitic steel T91 in water–vapour atmosphere. Chin J Mater Res, 2008, 22(6): 599-605.

Download:  PDF(1377KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of 9Cr-1Mo steel in (Ar+10%H2O) atmosphere at 600 °C, 650 °C and 700 °C was investigated. During oxidation for 10h the oxidation kinetics followed parabolic law at 600 °C, but two–stage parabolic law at 650 °C and 700 °C, in which the rate constant at the initial stage was higher than that at the second stage. With increasing temperature, the oxidation rate of T91 steel increased significantly. The oxidation activation energy was identified as 157.2 kJ/mol. The oxide scale with three–layer microstructure was composed of Fe2O3, Fe3O4 and (Fe, Cr)3O4 in the order from the top layer to the inner layer. Meanwhile the internal oxidation was also observed, the corresponding internal oxides were Cr2O3 and FeO. However, at 700 °C, neither Fe2O3 outer layer nor internal oxides formed. The outer layer (Fe2O3) had a weak adhesion to the intermediate layer (Fe3O4) and easily spalled during cooling from oxidation temperature to room temperature. The oxidation mechanism of T91 in (Ar+H2O) atmosphere was discussed finally.

Key words:  metal material      9Cr–1Mo steel      water vapor      oxide scale      oxidation      corrosion     
Received:  18 February 2008     
ZTFLH: 

TG172

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2008/V22/I6/599

1 G.Cumino, S.Di Cuonzo, A. Di Gianfrancesco, O.Tassa, Advanced high chromium ferritic steels for boiler components operating at high temperature, Latin American Applied Research, 32(3), 1(2002)
2 Y.Otguro, M.Matsubara, Creep rupture strength of heat affected zone for 9Cr ferritic heat resisting steels, Nuclear Engineering and design, 196, 51(2000)
3 Y.Minami, A.Tooyama, M.Seki, Steam–oxidation resistance of shot blasted stainless steel tubing after 10 year service, NKK Technical Review, 75(1), 10(1996)
4 H.Nickel, T.Wouters, M.Thiele, The effect of water vapor on the oxidation behavior of 9%Cr steels combustion gases, Fresenius J Anal Chem, 361, 540(1998)
5 Kofstand, P. High temperature corrosion. Essex, Uk: Elsevier Applied Science, 1988. 
6 P.J.Ennis, W.J.Quadakkers, Mechanisms of steam oxidation in high strength martensitic steels, International Journal of Pressure Vessels and Piping, 2007, online avaiable 
7 R.Rodr′iguez, A.Mart′in–Meizoso, I.Ocana, J.M.Mart′inez– Esnaola, A.S.P′erez, J.Izquierdo, Standard surface defects produced by water vapor oxidation in steels used in fossil fuel fired power plants, Mater. Sci. Eng., A342, 1(2003)
8 T.Sundararajan, S.Kuroda, High temperature of nanoceramic coated 9Cr–1Mo ferritic steel in air and steam, Current opinion in solid and materials science, 8, 305(2004)
9 JIN Yaohua, WANG Zhengpin, LIU Jiangnan, SHI Chongzhe, Research on the rupturing of the high temperature oxidation layers of T91 steel under two conditions, Foundry Technology, 26(11), 1039(2005)
(金耀华, 王正品, 刘江南, 石崇哲, T91钢在两种不同环境下的高温氧化层剥落机理研究, 铸造技术, 26(11), 1039(2005))
10 Yun Chen, Kumar Sridharan, Todd Allen, Corrosion behavior of ferritic–martensitic steel T91 in supercritical water, Corrosion Science, 48, 2843(2006)
11 Dionisio Laverde, Tom as G omez–Acebo, Francisco Castro, Continuous and cyclic oxidation of T91 ferritic steel under steam, Corrosion Science, 46, 613(2004)
12 J.Zurek, M.Michalik, F.Schmitz, T.–U.Kern, L.Singheiser, W.J.Quadakkers, The effect of water–vapor content and gas flow rate on the oxidation mechanism of a 10%Cr– Ferritic steel in Air–H2O mixture, Oxidation of Metals, 63, 401(2005)
13 J.Zurek, E.wessel, L.Niewolak, F.Schmitz, T.U.Kern, L.Singeiser, W.J.Quadakkers, Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650°C, Corrosion Science, 46, 2301(2004)
14 M.Nakai, K.Nagai, Y.Murata, M.Morinaga, Improvement in steam oxidation resistance of Fe–10%Cr–0.08C steel by suppressing hydrogen dissolution, Corrosion Science, 48, 3869(2006)

[1] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[2] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[3] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[4] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[5] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[6] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[7] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[8] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[9] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
[10] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[12] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[13] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[14] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[15] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
No Suggested Reading articles found!