Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 649-659    DOI: 10.11901/1005.3093.2021.490
ARTICLES Current Issue | Archive | Adv Search |
Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33
HE Yufeng1,2, WANG Li1, WANG Dong1, WANG Shaogang3, LU Yuzhang1, GU Ashan4, SHEN Jian1(), ZHANG Jian1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.AECC Guizhou Liyang Aviation Power Company Limited, Guiyang 550014, China
Cite this article: 

HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33. Chinese Journal of Materials Research, 2022, 36(9): 649-659.

Download:  HTML  PDF(3910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The third generation DD33 single crystal superalloy was subjected to standard heat treatment and hot isostatic pressing respectively, and then to different post-solution and -aging treatments. Hereafter, the effect of hot isostatic pressing and heat treatment on the microstructure and durability of the alloy were investigated by means of high-temperature endurance tests at 850℃/650 MPa and 1100℃/170 MPa, as well as metallographic microscope (OM), scanning electron microscope (SEM) and X-ray three-dimensional imaging (XCT). The results show that after proper hot isostatic pressing and subsequent heat treatment, the as-cast DD33 single crystal superalloys present more or less the same microstructure of (γ' phase size, volume fraction and cubic degree) as those subjected to standard heat treatment. Compared with the standard heat treated alloy, the volume fraction and size of the micropores of the alloy decreased significantly after hot isostatic pressing, from 0.0190% to 0.0005%, and the maximum equivalent diameter of the micropores decreased from 36.9 μm to 14.2 μm. The durable life of the alloy subjected to hot isostatic pressing was significantly prolonged when testing by 850℃/650 MPa and 1100℃/170 MPa. These results show that proper hot isostatic pressing and heat treatment can eliminate the micro voids, therewith, improve the durability of the alloy.

Key words:  metal materials      hot isostatic pressing      single crystal superalloy      micro-pore      stress rupture properties      X-ray tomography     
Received:  24 August 2021     
ZTFLH:  TG132.32  
Fund: National Natural Science Foundation of China(51631008);National Natural Science Foundation of China(91860201);National Natural Science Foundation of China(51771204);National Natural Science Foundation of China(51911530154);National Natural Science Foundation of China(U1732131);National Science and Technology Major Project(2017-VII-0008-0101);National Science and Technology Major Project(2017-VI-0003-0073);National Science and Technology Major Project(J2019-Ⅵ-0010);Key Deployment Projects of the Chinese Academy of Sciences(ZDRWCN-2019-01)
About author:  SHEN Jian, Tel: 13804984964, E-mail: shenjian@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.490     OR     https://www.cjmr.org/EN/Y2022/V36/I9/649

AlloyCrCoWMoAlTaReNi
DD333.59.06.01.56.08.04.0Bal.
Table 1  Nominal composition of the superalloy used in the experiments (mass fraction, %)
SpecimenStateHeat treatment process
ACAs-cast-
SHTStandard heat treatment1335℃/10 h/AC*+1180℃/4 h/AC*+870℃/24 h/AC*
AHAs-cast+HIP1310℃/120 MPa/4 h
AHS1As-cast+HIP+solution treatment 11310℃/120 MPa/4 h+1325℃/2 h/AC*
AHS2As-cast+HIP+solution treatment 21310℃/120 MPa/4 h+1325℃/6 h/AC*
AHS3As-cast+HIP+solution treatment 31310℃/120 MPa/4 h+1325℃/10 h/AC*
AHS3HT1As-cast+HIP+solution treatment 3+heat treatment 11310℃/120 MPa/4 h+1325℃/10 h/AC* +1120℃/4 h/AC*+870℃/24 h/AC*
AHS3HT2As-cast+HIP+solution treatment 3+heat treatment 21310℃/120 MPa/4 h+1325℃/10 h/AC* +1150℃/4 h/AC*+870℃/24 h/AC*
AHS3HT3As-cast+HIP+solution treatment 3+heat treatment 31310℃/120 MPa/4 h+1325℃/10 h/AC* +1180℃/4 h/AC*+870℃/24 h/AC*
Table 2  HIP parameters and heat treatment processes used in this work
ParameterXradia Versa XRM-500
Energy120 kV
Voxel resolution1.5 μm
Scan time9 h
Field of view1.5 mm×1.5 mm×2.0 mm
Number of projections1600~2000 (360° rotation)
Exposure time8 s
Detector binning×2
Table 3  Parameters for the XCT conducted on Xradia VersaXRM-500 system
Fig.1  Microstructure of as-cast (AC) DD33 alloy processed by HRS (a, b) OM and (c, d) SEM
Fig.2  Microstructure of standard heat treatment (SHT) DD33 alloy processed by HRS (a) OM, (b) dendrite region, and (c) interdendritic region
Fig.3  Scanning electron micrographs of the HRS DD33 before and after HIP treatment (a, b) AC and (c, d) AH
Fig.4  Microstructures (OM) of DD33 after AHS1 (a, b), AHS2 (c, d), and AHS3 heat treatment (e, f)
Fig.5  Scanning electron micrographs of the DD33 after AHS3HT1 (a, d), AHS3HT2 (b, e) and AHS3HT3 heat treatment (c, f)
Fig.6  EBSD data of the (a, c) AH and (b, d) AHSHT specimens nearby carbide: (a, b) IPF-X maps, (c, d) KAM maps
Fig.7  Ex-situ XCT observation of the evolution of micro-pores in DD33 AC sample before and after HIP heat treatment (a, b, c, d) AC, (e, f, g, h) AH, (i, j, k, l) AHS3HT3
Fig.8  Three dimensional morphologies of micro-pores inside the SHT DD33 sample by different processing. (a, b, c) HRS, (d, e, f) HIP
Test conditionStateStress rupture lifetime, t/hElongation, δ/%
850℃/650 MPaHRS (SHT)76.418.3
HIP (AHS3HT3)95.327.6
1100℃/170 MPaHRS (SHT)38.827.0
HIP (AHS3HT3)51.933.1
Table 4  Effect of HIP on the stress rupture properties of the DD33 alloy under different conditions
Fig.9  Fracture morphology of (a, c, e) HRS and (b, d, f) HIP specimens after 1100℃/170 MPa (a, b) the fracture surfaces, (c, d) the longitudinal section OM morphologies, (e, f) the morphology of γ/γʹ microstructure
1 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power., 2006, 22(2): 361
doi: 10.2514/1.18239
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(9): 1077
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(9): 1077
3 Fu H Z, Guo J J, Liu L, et al. Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Press, 2008:7
傅恒志, 郭景杰, 刘 林 等. 先进材料定向凝固 [M]. 北京: 科学出版社, 2008: 7
4 Aveson J W, Tennant P A, Foss B J, et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61(14): 5162
doi: 10.1016/j.actamat.2013.04.071
5 Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans B, 2000, 31(4): 801
doi: 10.1007/s11663-000-0117-9
6 Link T, Zabler S, Epishin A, et al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys [J]. Mater. Sci. Eng. A, 2006, 425(1-2): 47
doi: 10.1016/j.msea.2006.03.005
7 le Graverend J B, Adrien J, Cormier J. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: toward understanding what is damage [J]. Mater. Sci. Eng. A, 2017, 695: 367
doi: 10.1016/j.msea.2017.03.083
8 Ruttert B, Meid C, Roncery L M, et al. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy [J]. Scr. Mater., 2018, 155: 139
doi: 10.1016/j.scriptamat.2018.06.036
9 Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans. A, 2007, 38(6): 1177
10 Loh N L, Sia K Y. An overview of hot isostatic pressing [J]. J. Mater. Process. Technol., 1992, 30(1): 45
doi: 10.1016/0924-0136(92)90038-T
11 Guo H M, Zhao Y S, Zheng S, et al. Effect of hot-isostatic pressing on microstructure and mechanical properties of second generation single crystal superalloy DD6 [J]. J. Mater. Eng., 2016, 44(10): 60
郭会明, 赵云松, 郑 帅 等. 热等静压对第二代单晶高温合金DD6显微组织和力学性能的影响 [J]. 材料工程, 2016, 44(10): 60
12 He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56(9): 1195
doi: 10.11900/0412.1961.2020.00020
和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56(9): 1195
doi: 10.11900/0412.1961.2020.00020
13 Chang J C, Choi C, Kim J C, et al. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing [J]. J. Mater. Eng. Perform., 2003, 12(4): 420
doi: 10.1361/105994903770342953
14 Epishin A, Camin B, Hansen L, et al. Synchrotron 3D μ-Tomography of Porosity during Hot Isostatic Pressing of a Single-Crystal Nickel-Base Superalloy [J]. Mater. Sci. Forum., 2021, 1016: 102
doi: 10.4028/www.scientific.net/MSF.1016.102
15 Mujica Roncery L, Lopez-Galilea I, Ruttert B, et al. On the Effect of Hot Isostatic Pressing on the Creep Life of a Single Crystal Superalloys [J]. Adv. Eng. Mater., 2016, 18(8): 1381
doi: 10.1002/adem.201600071
16 Cervellon A, Cormier J, Mauget F, et al. Very high cycle fatigue of Ni-based single-crystal superalloys at high temperature [J]. Metall. Mater. Trans. A, 2018, 49(9): 3938
17 Reed R C, Cox D C, Rae C M F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 C [J]. Mater. Sci. Eng. A, 2007, 448(1-2): 88
doi: 10.1016/j.msea.2006.11.101
18 Roncery L M, Lopez-Galilea I, Ruttert B, et al. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy [J]. Mater. Des., 2016, 97: 544
doi: 10.1016/j.matdes.2016.02.051
19 Li X W. Effect of carbon on the microstructure and creep property of a third generation single crystal nickle-based superalloy [D]. Shenyang: University of Chinese Academy of Sciences, 2013
李相伟. 碳对第三代镍基单晶高温合金组织和蠕变持久性能的影响 [D]. 沈阳: 中国科学院大学, 2013
20 Kearsey R M, Beddoes J C, Jones P, et al. Compositional design considerations for microsegregation in single crystal superalloy systems [J]. Intermetallics, 2004, 12(7-9): 903
doi: 10.1016/j.intermet.2004.02.041
21 Jiang R, Bull D J, Evangelou A, et al. Strain accumulation and fatigue crack initiation at pores and carbides in a SX superalloy at room temperature [J]. Int. J. Fatigue, 2018, 114: 22
doi: 10.1016/j.ijfatigue.2018.05.003
22 Huang Y Q, Wang D, Lu Y Z, et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413 [J]. Chin. J. Mater. Res., 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
黄亚奇, 王 栋, 卢玉章 等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为 [J]. 材料研究学报, 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
23 Wang L, Xie G, Zhang J, et al. On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy [J]. Scr. Mater., 2006, 55(5): 457
doi: 10.1016/j.scriptamat.2006.05.013
24 Bokstein B S, Epishin A I, Link T, et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization [J]. Scr. Mater., 2007, 57(9): 801
doi: 10.1016/j.scriptamat.2007.07.012
25 Han D Y, Jiang W G, Xiao J H, et al. Effect of section size and solution treatment on micropore of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2018, 32(3): 168
doi: 10.11901/1005.3093.2017.152
韩东宇, 姜卫国, 肖久寒 等. 截面尺寸和固溶制度对单晶高温合金DD33中显微孔洞的影响 [J]. 材料研究学报, 2018, 32(3): 168
doi: 10.11901/1005.3093.2017.152
26 Shi Q Y, Li X H, Zheng Y R, et al. Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes [J]. Acta Metall. Sin., 2012, 48(10): 1237
doi: 10.3724/SP.J.1037.2012.00172
石倩颖, 李相辉, 郑运荣 等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成 [J]. 金属学报, 2012, 48(10): 1237
27 Epishin A, Fedelich B, Link T, et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling [J]. Mater. Sci. Eng. A, 2013, 586: 342
doi: 10.1016/j.msea.2013.08.034
28 Li Y, Wang L, Zhang G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850℃ [J]. Mater. Sci. Eng. A, 2019, 760: 26
doi: 10.1016/j.msea.2019.05.075
29 Le Graverend J B, Cormier J, Kruch S, et al. Microstructural parameters controlling high-temperature creep life of the nickel-base single-crystal superalloy MC2 [J]. Metall. Mater. Trans. A, 2012, 43(11): 3988
30 Isaac A, Sket F, Reimers W, et al. In situ 3D quantification of the evolution of creep cavity size, shape, and spatial orientation using synchrotron X-ray tomography [J]. Mater. Sci. Eng. A, 2008, 478(1-2): 108
doi: 10.1016/j.msea.2007.05.108
31 Shi Z X, Liu S Z, Xiong J C, et al. Effect of hot isostatic pressing on the microstructure and stress rupture properties of single crystal superalloy [J]. Rare Met. Mater. Eng., 2015, 44(9): 2300
史振学, 刘世忠, 熊继春. 热等静压对单晶高温合金组织和持久性能的影响 [J]. 稀有金属材料与工程, 2015, 44(9): 2300
32 Fritzemeier L G. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [A]. Superalloys 1988 [C]. Warrendale, 1988: 265
[1] ZHANG Min, ZHANG Siqian, WANG Dong, CHEN Lijia. Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(6): 417-422.
[2] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[3] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[4] KONG Yafei, LUO Xinghong, LI Yang, LIU Shi. Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 770-780.
[5] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[6] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[7] LIANG Shuang, LIU Zhixin, LIU Lirong, LIANG Jinguang, JI Liangbo, SHAO Huayang. Effect of Ru on Creep Properties of a High Tungsten Containing Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(9): 694-702.
[8] QIN Feng, SHI Qi, LIU Xin, ZHOU Ge, CHEN Lijia. Effect of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted 17-4PH Stainless Steel[J]. 材料研究学报, 2021, 35(8): 606-614.
[9] HUANG Yaqi, WANG Dong, LU Yuzhang, XIONG Ying, SHEN Jian. Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413[J]. 材料研究学报, 2021, 35(7): 510-516.
[10] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[11] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[12] Qiaomu LIU,Jie WU,Yulong CHEN,Qianming CHEN,Huiping PEI,Lei XU. Effect of Temperature and Powder Particle Size on Mechanical Properties and Microstructure of PM Ti2AlNb Alloy Prepared via Hot Isostatic Pressing[J]. 材料研究学报, 2019, 33(3): 161-169.
[13] Gang LI,Siqian ZHANG,Zongpeng ZHANG,Di WANG,Dong WANG,Jiasheng DONG. Creep Deformation of Three Samples Misaligned 15o from <001> Crystallographic Axis for a Nickel-based Single Crystal Superalloy DD413[J]. 材料研究学报, 2019, 33(12): 892-896.
[14] Ruipeng GUO, Jing ZHANG, Lei XU, Jiafeng LEI, Yuyin LIU, Rui YANG. Mechanical Properties of Ti-5Al-2.5Sn ELI Powder Compacts[J]. 材料研究学报, 2018, 32(5): 333-340.
[15] Dongyu HAN, Weiguo JIANG, Jiuhan XIAO, Xiangwei LI, Langhong LOU. Effect of Section Size and Solution Treatment on Micropore of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2018, 32(3): 168-176.
No Suggested Reading articles found!