Please wait a minute...
Chin J Mater Res  2004, Vol. 18 Issue (4): 424-428    DOI:
Research Articles Current Issue | Archive | Adv Search |
Stress corrosion cracking of a BaTiO{3} ferroelectric ceramics
;;;;
北京科技大学
Cite this article: 

. Stress corrosion cracking of a BaTiO{3} ferroelectric ceramics. Chin J Mater Res, 2004, 18(4): 424-428.

Download:  PDF(1882KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stress corrosion cracking (SCC) or static fatigue fracture of a BaTiO$_{3}$ ferroelectric ceramics in moist atmosphere, water, silicon oil and formamide was investigated at constant load test using a single--edge notched tensile specimen. The result showed that SCC could occur in these four environments. The fracture surface overloaded in air is transgranular brittle fracture, and the fracture surfaces of SCC in moist atmosphere, water, silicon oil and formamide are mainly transgranular but there is a small intergranular region. The normalized threshold stress intensity factor of SCC was 0.78(in air), 0.63(in water), 0.66(in silicon oil) and 0.82 (in formamide), respectively, and the fracture toughness is 1.29$\pm$0.14 MPa$\cdot$m$^{1/2}$.
Key words:  inorganic non-metallic materials      PZT ceramic      stress corrosion cracking      threshold stress intensity fa     
Received:  01 September 2004     
ZTFLH:  TB321  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2004/V18/I4/424

1 C.P.Chen, W.J.Knapp, J Am. Ceram. Soc., 60, 87(1977)
2 J.E.Ritter, J.N.Humenik, J. Mater. Sci., 14, 626(1979)
3 S.M.Spearing, F.W.Zok, A.G.Evans, J. Am. Ceram. Soc., 77, 562(1994)
4 T.Okabe, M.Kido, T.Miyahara, Eng. Pract. Mech., 48, 137(1994)
5 E.Iskevitch, R.Chaim, Phil. May., 61, 209(1990)
6 Y.Wang, W.Y.Chu, K.W.Gao, Y.J.Su, L.J.Qiao, Appl. Phys. Lett., 82, 1583(2003)
7 Y.Wang, W.Y.Chu, Y.J.Su, L.J.Qiao, Mater. Lett., 57, 1156(2003)
8 Y.Wang, W.Y.Chu, Y.J.Su, L.J.Qiao, Mater. Sci. Eng., 95, 263(2002B)
9 W.Y.Chu, J.Yao, C.M.Hsiao, Metali. Trans., 15A, 729(1984)
10 Y.Wang, W.Y.Chu, L.J.Qiao, Y.J.Su, Mater. Sci. Eng. B, 98(1) , 1(2003)
11 T. A.Michalske, S.W.Freiman, J. Am. Ceram. Soc., 66, 284(1983)
12 T.A.Michalske, B.C.Banker, J. Appl. Phys., 56, 2666(1984)
13 H.H.Yu, Z.Suo, Acta Mater., 47, 77(1999)
14 CHU Wuyang, Hydrogen Damage and Delayed Fracture (Beijing, Metallurgic Industry Press, 1988) p.270(褚武扬,氢损伤与滞后断裂(北京,冶金工业出版社,1988) p.270)h
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!