Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 881-891    DOI: 10.11901/1005.3093.2025.094
ARTICLES Current Issue | Archive | Adv Search |
Creep Mechanism of Biodegradable Zn-0.45Mn Alloy in Temperature Range of 37-121 oC
SUN Tao1,2, TANG Lebin2, ZHU Xinglong2, YANG Lijing2(), ZHANG Qingke2, SONG Zhenlun2
1.College of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2.State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

SUN Tao, TANG Lebin, ZHU Xinglong, YANG Lijing, ZHANG Qingke, SONG Zhenlun. Creep Mechanism of Biodegradable Zn-0.45Mn Alloy in Temperature Range of 37-121 oC. Chinese Journal of Materials Research, 2025, 39(12): 881-891.

Download:  HTML  PDF(18476KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zn-0.45Mn alloy was prepared by melt casting and hot extrusion, and the creep behavior of Zn-0.45Mn alloy was investigated at the temperature range of 37-121 oC and by stress in the range of 40 MPa to 170 MPa. Under the low stress condition of 40 MPa, the creep characteristics of Zn-0.45Mn alloy showed creep stress exponent of 5.44, 5.08, and 4.33, corresponding to test temperature at 37 oC, 51 oC and 121 oC respectively. The apparent creep activation energy was calculated to be 24.1-42.1 kJ/mol. In combination with microstructural analysis, the grain boundary slippage may be the main creep mechanism, especially at high temperatures. The results not only reveal the creep behavior of Zn-0.45Mn alloy, but also provide a scientific basis for expanding their potential in biomedical applications.

Key words:  non-ferrous metals and their alloys      Zn-Mn alloy      creep      stress exponent      apparent creep activation energy     
Received:  03 March 2025     
ZTFLH:  TG146.1  
Fund: Key Research and Development Program of Zhejiang Province(2024C03078);Ningbo International R & D Collaboration Project(2023H022);Ningbo Youth Science and Technology Innovation Leading Talent Project(2023QL014)
Corresponding Authors:  YANG Lijing, Tel: 15267855738, E-mail: yanglj@nimte.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.094     OR     https://www.cjmr.org/EN/Y2025/V39/I12/881

Fig.1  Experimental process flow for preparation and property testing of Zn -0.45Mn alloy
SampleElement / %, mass fraction
ZnMn
Zn-0.45MnBal.0.4511
Table 1  Chemical composition of Zn-0.45Mn alloy
Fig.2  XRD characterization of Zn-0.45Mn alloy
Fig.3  Microstructure of Zn-0.45Mn alloy in the perpendicular and parallel to the extrusion direction (a, e) Schematic of the observation locations, (b, f) Optical micrographs of Zn-0.45Mn alloy perpendicular to and parallel to the extrusion direction, with ED indicating the extrusion direction, (c) SEM image perpendicular to the extrusion direction, (d) High magnification image of the green box area in (c), (c'-d') BSE images of (c-d), (g) SEM image parallel to the extrusion direction, (h) High magnification image of the yellow box area in (g), (g'-h') BSE images of (g-h)
PointElement / %, mass fraction
Zn KMn K
a99.300.70
b99.910.09
c99.110.89
d100.000.00
e99.730.27
f98.111.89
Table 2  EDS analysis results at different positions perpendicular to and parallel to the extrusion direction
Fig.4  Tensile stress-strain curve (a), macroscopic morphology of tensile fracture (b) and an enlarged view of the center of the fracture in Fig.4b (c)
Fig.5  Creep curves at room temperature (a) and at 37-121 oC (b-d) under various stresses
Fig.6  Creep strain versus time curves of Zn-0.45Mn alloy at 70 MPa, 37-121 oC, showing the initial creep stage (Ⅰ), steady state creep stage (Ⅱ) and final creep stage (Ⅲ)
Fig.7  Fracture morphologies of Zn-0.45Mn alloy after creep rupture under various stresses at 37 oC, 51 oC, and 121 oC (No rupture occurred after 1000 h of creep at 37 oC and 51 oC under 40 MPa)
Fig.8  Relationship between the steady-state creep rate and applied stress for Zn-0.45Mn alloy at 37 oC, 51 oC, and 121 oC
Fig.9  Creep fracture behavior at different temperatures (a) relationship between fracture time and applied stress, (b) relationship between fracture time and minimum creep rate
Fig.10  Creep stress exponent n at 37 oC, 51 oC, and 121 oC
Fig.11  Logarithm of steady state creep rate (lnε˙) versus the reciprocal of temperature (1000/T) under different stress levels (a), activation energy under different stress levels (b)
Fig.12  Longitudinal section of Zn-0.45Mn alloy after creep rupture at 70 MPa and 37 oC
[1] Huang Q L, Ren Y B, Ma Y H, et al. Research progress on biodegradable zinc-based alloys in orthopedics [J]. Mater. China, 2023, 42(8): 631
黄庆利, 任伊宾, 马玉豪 等. 可降解锌基合金在骨科领域的研究进展[J]. 中国材料进展, 2023, 42(8): 631
[2] Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25(18): 2577
doi: 10.1002/adma.v25.18
[3] Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53(3): 257
doi: 10.11900/0412.1961.2016.00529
郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53(3): 257
doi: 10.11900/0412.1961.2016.00529
[4] Zhu Y H. Creep deformation and microstructural change in extruded Zn-Al based alloy[J]. Met. Mater., 1998, 4: 878
doi: 10.1007/BF03026416
[5] Wang Y P, Wang T B, Yang C X, et al. Effects of microalloy elements on microstructure and properties of Zn-Cu-Ti alloy [J]. Chin. J. Nonferrous Met., 2024, 34(3): 787
王云鹏, 王同波, 杨春秀 等. 微量合金元素对Zn-Cu-Ti合金显微组织与性能的影响[J]. 中国有色金属学报, 2024, 34(3): 787
[6] Geng Z J, Xiao L R, Cai Z Y, et al. Effect of trace elements Cr and Mg on mechanics and creep properties of Zn-Cu-Ti alloys [J] Min. Metall. Eng., 2012, 32(5): 101
耿占吉, 肖来荣, 蔡圳阳 等. 微量元素Cr、Mg对Zn-Cu-Ti合金力学和蠕变性能的影响 [J]. 矿冶工程, 2012, 32(5): 101
[7] Quintana M J, García J O, González R, et al. Influence of strain rate and heat treatments on tensile and creep properties of Zn-0.15Cu-0.07Ti alloys [J]. Dyna, 2016, 83(195): 77
doi: 10.15446/dyna.v83n195.44926
[8] Türk A, Durman M, Kayali E S. The effect of manganese on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy [J]. J. Mater. Sci., 2007, 42: 8298
doi: 10.1007/s10853-007-1504-2
[9] Muñoz-Andrade J D, Mendoza-Allende A, Cabrera E, et al. Effect of grain size on the activation energy for plastic deformation near room temperature in a Zn-28.7 pct Al-1.9 pct Cu alloy [J]. J. Mater. Sci., 2007, 42: 7617
doi: 10.1007/s10853-007-1751-2
[10] Kallien L H, Leis W. Ageing of zink alloys [J]. Int. Foundry Res., 2011, 63(1): 2
[11] Wu Z C, Sandlöbes S, Wang Y F N, et al. Creep behaviour of eutectic Zn-Al-cu-mg alloys [J]. Mater. Sci. Eng., 2018, 724A: 80
[12] Mostaed E, Sikora-Jasinska M, Ardakani M S, et al. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting [J]. Acta Biomater., 2020, 105: 319
doi: S1742-7061(20)30043-X pmid: 31982587
[13] Zhuo X R, Wu Y N, Ju J, et al. Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening [J]. J. Mater. Res. Technol., 2022, 17: 244
doi: 10.1016/j.jmrt.2022.01.004
[14] Sun S N, Ren Y P, Wang L Q, et al. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys [J]. Mater. Sci. Eng., 2017, 701A: 129
[15] Zhu X L, Ren T T, Guo P S, et al. Strengthening mechanism and biocompatibility of degradable Zn-Mn alloy with different Mn content [J]. Mater. Today Commun., 2022, 31: 103639
[16] Guo P S, Ren T T, Liu Y X, et al. Bimodal coarse-grained and unimodal ultrafine-grained biodegradable Zn-0.5 Mn alloy: superplastic mechanism and short-term biocompatibility in vivo [J]. Mater. Today Commun., 2022, 31: 103660
[17] Jarzębska A, Maj Ł, Bieda M, et al. Dynamic recrystallization and its effect on superior plasticity of cold-rolled bioabsorbable zinc-copper alloys [J]. Materials, 2021, 14: 3483
doi: 10.3390/ma14133483
[18] Huang C, Wang Y, Yang F, et al. Additively manufactured biodegradable Zn-Mn-based implants with an unprecedented balance of strength and ductility [J]. Acta Biomater., 2025, 196: 506
doi: 10.1016/j.actbio.2025.02.047
[19] Fan S H, Yue R, Li S, et al. First-principles calculations of diffusion activation energies for designing anti-self-aging biodegradable zinc alloys [J]. J. Mater. Res., 2021, 36(7): 1475
doi: 10.1557/s43578-021-00177-7
[20] Das A, Kumar Chakravartty J. Fractographic correlations with mechanical properties in ferritic martensitic steels [J]. Surf. Topogr.: Metrol. Prop., 2017, 5(4): 045006
[21] Chae D, Koss D A. Damage accumulation and failure of HSLA-100 steel [J]. Mater. Sci. Eng, 2004, 366A(2) : 299
[22] Ashby M F, Dyson B F. Creep damage mechanics and micromechanisms [A]. ValluriSR, TaplinDM R, RaoPR, et al. Fracture 84 [M]. New York: Pergamon Press, 1984: 3
[23] Monkman E C, Grant N J. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests [J]. Proc. ASTM Int., 1956, 56: 593
[24] Michi R A, Toinin J P, Farkoosh A R, et al. Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al-Zr-Er-Si alloy [J]. Acta Mater., 2019, 181: 249
doi: 10.1016/j.actamat.2019.09.055
[25] Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54(4): 485
苏煜森, 杨银辉, 曹建春 等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54(4): 485
doi: 10.11900/0412.1961.2017.00151
[26] Sheikh-Ali A D. The influence of crystallographic texture on grain boundary sliding during superplastic deformation in Zn–1.1% Al alloy [J]. Mater. Sci. Eng., 2008, 475A(1-2) : 308
[27] Chen X Y, Li Q N, Zhou Y, et al. Creep behavior and creep mechanism of Mg-Gd-Y-Sm-Zr alloy [J]. Vacuum, 2023, 212: 112009
doi: 10.1016/j.vacuum.2023.112009
[28] Kim W J, Chung S W, Chung C S, et al. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures [J]. Acta Mater., 2001, 49(16): 3337
doi: 10.1016/S1359-6454(01)00008-8
[29] Chung S W, Watanabe H, Kim W J, et al. Creep deformation mechanisms in coarse-grained solid solution Mg alloys [J]. Mater. Trans., 2004, 45(4): 1266
doi: 10.2320/matertrans.45.1266
[30] Mordike B L. Creep-resistant magnesium alloys [J]. Mater. Sci. Eng., 2002, 324A(1-2) : 103
[31] Ren L B, Zhao Y R, Li J J, et al. Inhibiting creep in fine-grained Mg-Al alloys through grain boundary stabilization [J]. J. Magnes. Alloy., 2025, 13: 2072
doi: 10.1016/j.jma.2024.04.033
[32] Zhu S M, Wu C C, Li G N, et al. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications [J]. Mater. Sci. Eng., 2020, 777A: 139082
[33] Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics [M]. Oxford: Pergamon Press, 1982: 1
[34] Wang Y Y, Jia C, Tayebi M, et al. Microstructural evolution during accelerated tensile creep test of ZK60/SiCp composite after KoBo extrusion [J]. Materials, 2022, 15(18): 6428
doi: 10.3390/ma15186428
[35] Huang Y J, Liu C M, Wan Y C, et al. Effect of dislocation-induced aging precipitate bands on creep resistance of Mg-Gd-Y-Zr-Ag alloy [J]. J. Alloy. Compd., 2023, 960: 170633
doi: 10.1016/j.jallcom.2023.170633
[36] Zhen R, Wu Z, Xu H Y, et al. Microstructures and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
doi: 10.11901/1005.3093.2019.364
甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能 [J]. 材料研究学报, 2020, 34(3): 225
[37] Sha G Y, Xu Y B, Han E H. Microstructure and creep behavior of a cast Mg-RE alloy [J]. Chin. J. Mater. Res., 2003, 17(6): 603
沙桂英, 徐永波, 韩恩厚. 铸造Mg-RE合金的显微结构及其蠕变行为 [J]. 材料研究学报, 2003, 17(6): 603
[38] Xiao L, Lu W J, Qin J N, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite [J]. Compos. Sci. Technol., 2009, 69(11-12): 1925
doi: 10.1016/j.compscitech.2009.04.009
[39] Mikhaylovskaya A V, Yakovtseva O A, Mochugovskiy A G, et al. Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al-Mg-based alloys [J]. J. Alloy. Compd., 2022, 926: 166785
doi: 10.1016/j.jallcom.2022.166785
[1] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[2] ZHANG Haojie, LIN Tong, ZHAO Jie, CAO Tieshan, CHENG Congqian. High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25[J]. 材料研究学报, 2025, 39(12): 945-951.
[3] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[4] XIANG Yulin, YANG Renxian, CAI Xin, HU Xiaoqiang, LI Dianzhong. Effect of Ce Addition on Creep Properties of X20Co Martensitic Heat-resistant Steel[J]. 材料研究学报, 2024, 38(10): 721-731.
[5] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[6] ZHANG Min, ZHANG Siqian, WANG Dong, CHEN Lijia. Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(6): 417-422.
[7] LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie. Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25[J]. 材料研究学报, 2023, 37(11): 846-854.
[8] LIANG Shuang, LIU Zhixin, LIU Lirong, LIANG Jinguang, JI Liangbo, SHAO Huayang. Effect of Ru on Creep Properties of a High Tungsten Containing Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(9): 694-702.
[9] XI Guoqiang, QIU Jianke, LEI Jiafeng, MA Yingjie, YANG Rui. Room Temperature Creep Behavior of Ti-6Al-4V Alloy[J]. 材料研究学报, 2021, 35(12): 881-892.
[10] YU Xin, DI Tongtong, SHEN Hangyan. Synthesis of Nano-SnAgCu Solder by Microemulsion Method[J]. 材料研究学报, 2020, 34(4): 299-303.
[11] ZHEN Rui,WU Zhen,XU Hengyuan,TAN Shuyong. Microstructures and Mechanical Properties of Mg-13Gd-1Zn Alloy[J]. 材料研究学报, 2020, 34(3): 225-230.
[12] YUE Ke, LIU Jianrong, YANG Rui, WANG Qingjiang. Primary Creep and Steady-State Creep of Ti65 Alloy[J]. 材料研究学报, 2020, 34(2): 151-160.
[13] Dongying WANG,Liyi WANG,Xin FENG,Bin ZHANG,Xingping YONG,Guangping ZHANG. Creep Properties of Pre-deformed F316 Stainless Steel[J]. 材料研究学报, 2019, 33(7): 497-504.
[14] Zifei NI,Feng XUE. High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel[J]. 材料研究学报, 2019, 33(4): 306-312.
[15] Gang LI,Siqian ZHANG,Zongpeng ZHANG,Di WANG,Dong WANG,Jiasheng DONG. Creep Deformation of Three Samples Misaligned 15o from <001> Crystallographic Axis for a Nickel-based Single Crystal Superalloy DD413[J]. 材料研究学报, 2019, 33(12): 892-896.
No Suggested Reading articles found!