Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 945-951    DOI: 10.11901/1005.3093.2025.023
ARTICLES Current Issue | Archive | Adv Search |
High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25
ZHANG Haojie, LIN Tong, ZHAO Jie(), CAO Tieshan(), CHENG Congqian
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

ZHANG Haojie, LIN Tong, ZHAO Jie, CAO Tieshan, CHENG Congqian. High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25. Chinese Journal of Materials Research, 2025, 39(12): 945-951.

Download:  HTML  PDF(5640KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herewith, the indentation creep of Sanicro25 steel was assessed via an indentation creep test set with a flat-ended cylindrical indenter of 1 mm in diameter in temperature range of 973-1073 K, and stress range of 273-765 MPa. The results show that: with the increase of temperature and stress, the steady state creep rate is increasing; according to the steady state power relationship, the average stress index is deduced to be 3.6, and the activation energy 257-295 kJ/mol, which are in good agreement with those acquired from the uniaxial tensile test. It follows that the indentation creep test can reliably characterize the creep behavior of alloys. The surface of the tested steel presents typical characteristics of plastic deformation accumulation, which may be ascribed to the material flow that occurs beneath the pressure indenter in the fully plastic region along the axial direction; There existed three characteristic deformation zones beneath the indenter, in one of the three zones, the grains exhibit significant preferential orientation deformation, which verified the creep mechanism dominated by dislocation migration.

Key words:  metallic materials      indentation creep      deformation mechanism      Sanicro25 steel     
Received:  02 January 2025     
ZTFLH:  TG142.73  
Fund: Basic Research Project for Marine Gas Turbines(MGT2023001)
Corresponding Authors:  ZHAO Jie, Tel: 18940935099, E-mail: jiezhao@dlut.edu.cn;
CAO Tieshan, Tel: 13354054601, E-mail: tieshan@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.023     OR     https://www.cjmr.org/EN/Y2025/V39/I12/945

Fig.1  Original metallographic organization (a) and indentation creep schematic diagram (b) of Sanicro25 steel
MaterialTemperature, T/KApplied stress,σ/MPa

973

510

638

765

998

383

510

638

765

Sanicro25 steel

1023

383

510

638

765

1073

273

510

638

765

Table 1  Experimental conditions and parameters
Fig.2  Indentation depth-time (a, c) and indentation creep rate-time (b, d) curves for Sanicro25 steel at different stresses (a, c) and different temperatures (b, d)
Fig.3  Sanicro25 indentation creep curves at 1073 K (a) repeated three measurement curves at different stresses at 1073 K, (b) indentation creep rate-depth
Fig.4  Steady state creep rate of Sanicro25 steel as a function of temperature and stress (a) steady state creep rate-stress, (b) steady state creep rate-temperature
Fig.5  Tensile creep vs. corrected indentation creep rate-stress plot
Fig. 6  Longitudinal laser confocal map of indentation at 1073 K-765 MPa vs. measured and computer-recorded depths (a) laser confocal, (b) measured depth vs. recorded depth
Fig.7  Metallographic microstructure of Sanicro25 steel after creep at 1073 K-765 MPa
[1] Zhu Z L, Jiang D F, Cao Q, et al. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water [J]. Mater. Corros., 2019, 70: 1087
[2] Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29: 195
于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29: 195
doi: 10.11901/1005.3093.2014.610
[3] Qiao J X, Shen J J, Wang X Y. Effect of cold deformation on Microstructure and properties of Sanicro25 austenitic heat-resistant steel [J]. Mater. Mech. Eng., 2022, 46(10): 92
乔吉新, 申俊杰, 王新宇. 冷变形对Sanicro25奥氏体耐热钢组织和性能的影响 [J]. 机械工程材料, 2022, 46(10): 92
doi: 10.11973/jxgccl202210016
[4] Dorner D, Röller K, Skrotzki B, et al. Creep of a TiAl alloy: a comparison of indentation and tensile testing [J]. Mater. Sci. Eng., 2003, 357A: 346
[5] Zhang Y, Jing H Y, Xu L Y, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng., 2017, 686A: 102
[6] Lv D C, Cao T S, Cheng C Q, et al. Creep behavior and fracture characteristic of austenitic heat-resistant steel Sanicro25 [J]. Chin. J. Mater. Res., 2023, 37: 846
doi: 10.11901/1005.3093.2022.589
吕德超, 曹铁山, 程从前 等. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征 [J]. 材料研究学报, 2023, 37: 846
doi: 10.11901/1005.3093.2022.589
[7] Dymáček P, Dobeš F, Kloc L. Small punch testing of Sanicro25 steel and its correlation with uniaxial tests [J]. Key Eng. Mater., 2017, 734: 70
doi: 10.4028/www.scientific.net/KEM.734
[8] Chu S N G, Li J C M. Impression creep; a new creep test [J]. J. Mater. Sci., 1977, 12: 2200
doi: 10.1007/BF00552241
[9] Tabor D. A simple theory of static and dynamic hardness [J]. Proc. Roy. Soc., 1948, 192A: 247
[10] Yu H Y, Li J C M. Computer simulation of impression creep by the finite element method [J]. J. Mater. Sci., 1977, 12: 2214
doi: 10.1007/BF00552243
[11] Chu S N G, Li J C M. Impression creep of β-tin single crystals [J]. Mater. Sci. Eng., 1979, 39: 1
[12] Kumar A, Kumar N, Mahto M K, et al. Impression creep behaviour of different zones of pulsed gas tungsten arc welded Ti-6Al-4V alloy [J]. Mater. Today Commun., 2023, 36: 106722
[13] Rashno S, Reihanian M, Ranjbar K. Tensile and creep properties of Al-7Si-0.3 Mg alloy with Zr and Er addition [J]. Mater. Sci. Technol., 2020, 36: 1603
doi: 10.1080/02670836.2020.1809144
[14] Ansary S, Mahmudi R, Esfandyarpour M J. Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior [J]. Mater. Sci. Eng., 2012, 556A: 9
[15] Johnson K L. The correlation of indentation experiments [J]. J. Mech. Phys. Solids, 1970, 18:115
doi: 10.1016/0022-5096(70)90029-3
[16] Reinikainen T, Kivilahti J. Deformation behavior of dilute SnBi (0.5 to 6 at. pct) solid solutions [J]. Metall. Mater. Trans., 1999, 30A: 123
[17] Langdon T G. Identifiying creep mechanisms at low stresses [J]. Mater. Sci. Eng., 2000, 283A: 266
[18] Yue Z F, Probst-Hein M, Eggeler G. Determination of creep parameters from indentation creep experiments: a parametric finite element study for single phase materials [J]. Mater. High Temp., 2000, 17: 449
doi: 10.1179/mht.2000.059
[19] Hyde T H, Yehia K A, Becker A A. Interpretation of impression creep data using a reference stress approach [J]. Int. J. Mech. Sci., 1993, 35: 451
doi: 10.1016/0020-7403(93)90035-S
[20] Naveena, Ganesh Kumar J, Mathew M D. Finite element analysis of plastic deformation during impression creep [J]. J. Mater. Eng. Perform., 2015, 24: 1741
doi: 10.1007/s11665-014-1225-z
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!