|
|
|
| High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25 |
ZHANG Haojie, LIN Tong, ZHAO Jie( ), CAO Tieshan( ), CHENG Congqian |
| School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
ZHANG Haojie, LIN Tong, ZHAO Jie, CAO Tieshan, CHENG Congqian. High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25. Chinese Journal of Materials Research, 2025, 39(12): 945-951.
|
|
|
Abstract Herewith, the indentation creep of Sanicro25 steel was assessed via an indentation creep test set with a flat-ended cylindrical indenter of 1 mm in diameter in temperature range of 973-1073 K, and stress range of 273-765 MPa. The results show that: with the increase of temperature and stress, the steady state creep rate is increasing; according to the steady state power relationship, the average stress index is deduced to be 3.6, and the activation energy 257-295 kJ/mol, which are in good agreement with those acquired from the uniaxial tensile test. It follows that the indentation creep test can reliably characterize the creep behavior of alloys. The surface of the tested steel presents typical characteristics of plastic deformation accumulation, which may be ascribed to the material flow that occurs beneath the pressure indenter in the fully plastic region along the axial direction; There existed three characteristic deformation zones beneath the indenter, in one of the three zones, the grains exhibit significant preferential orientation deformation, which verified the creep mechanism dominated by dislocation migration.
|
|
Received: 02 January 2025
|
|
|
| Fund: Basic Research Project for Marine Gas Turbines(MGT2023001) |
Corresponding Authors:
ZHAO Jie, Tel: 18940935099, E-mail: jiezhao@dlut.edu.cn; CAO Tieshan, Tel: 13354054601, E-mail: tieshan@dlut.edu.cn
|
| [1] |
Zhu Z L, Jiang D F, Cao Q, et al. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water [J]. Mater. Corros., 2019, 70: 1087
|
| [2] |
Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29: 195
|
|
于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29: 195
doi: 10.11901/1005.3093.2014.610
|
| [3] |
Qiao J X, Shen J J, Wang X Y. Effect of cold deformation on Microstructure and properties of Sanicro25 austenitic heat-resistant steel [J]. Mater. Mech. Eng., 2022, 46(10): 92
|
|
乔吉新, 申俊杰, 王新宇. 冷变形对Sanicro25奥氏体耐热钢组织和性能的影响 [J]. 机械工程材料, 2022, 46(10): 92
doi: 10.11973/jxgccl202210016
|
| [4] |
Dorner D, Röller K, Skrotzki B, et al. Creep of a TiAl alloy: a comparison of indentation and tensile testing [J]. Mater. Sci. Eng., 2003, 357A: 346
|
| [5] |
Zhang Y, Jing H Y, Xu L Y, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng., 2017, 686A: 102
|
| [6] |
Lv D C, Cao T S, Cheng C Q, et al. Creep behavior and fracture characteristic of austenitic heat-resistant steel Sanicro25 [J]. Chin. J. Mater. Res., 2023, 37: 846
doi: 10.11901/1005.3093.2022.589
|
|
吕德超, 曹铁山, 程从前 等. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征 [J]. 材料研究学报, 2023, 37: 846
doi: 10.11901/1005.3093.2022.589
|
| [7] |
Dymáček P, Dobeš F, Kloc L. Small punch testing of Sanicro25 steel and its correlation with uniaxial tests [J]. Key Eng. Mater., 2017, 734: 70
doi: 10.4028/www.scientific.net/KEM.734
|
| [8] |
Chu S N G, Li J C M. Impression creep; a new creep test [J]. J. Mater. Sci., 1977, 12: 2200
doi: 10.1007/BF00552241
|
| [9] |
Tabor D. A simple theory of static and dynamic hardness [J]. Proc. Roy. Soc., 1948, 192A: 247
|
| [10] |
Yu H Y, Li J C M. Computer simulation of impression creep by the finite element method [J]. J. Mater. Sci., 1977, 12: 2214
doi: 10.1007/BF00552243
|
| [11] |
Chu S N G, Li J C M. Impression creep of β-tin single crystals [J]. Mater. Sci. Eng., 1979, 39: 1
|
| [12] |
Kumar A, Kumar N, Mahto M K, et al. Impression creep behaviour of different zones of pulsed gas tungsten arc welded Ti-6Al-4V alloy [J]. Mater. Today Commun., 2023, 36: 106722
|
| [13] |
Rashno S, Reihanian M, Ranjbar K. Tensile and creep properties of Al-7Si-0.3 Mg alloy with Zr and Er addition [J]. Mater. Sci. Technol., 2020, 36: 1603
doi: 10.1080/02670836.2020.1809144
|
| [14] |
Ansary S, Mahmudi R, Esfandyarpour M J. Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior [J]. Mater. Sci. Eng., 2012, 556A: 9
|
| [15] |
Johnson K L. The correlation of indentation experiments [J]. J. Mech. Phys. Solids, 1970, 18:115
doi: 10.1016/0022-5096(70)90029-3
|
| [16] |
Reinikainen T, Kivilahti J. Deformation behavior of dilute SnBi (0.5 to 6 at. pct) solid solutions [J]. Metall. Mater. Trans., 1999, 30A: 123
|
| [17] |
Langdon T G. Identifiying creep mechanisms at low stresses [J]. Mater. Sci. Eng., 2000, 283A: 266
|
| [18] |
Yue Z F, Probst-Hein M, Eggeler G. Determination of creep parameters from indentation creep experiments: a parametric finite element study for single phase materials [J]. Mater. High Temp., 2000, 17: 449
doi: 10.1179/mht.2000.059
|
| [19] |
Hyde T H, Yehia K A, Becker A A. Interpretation of impression creep data using a reference stress approach [J]. Int. J. Mech. Sci., 1993, 35: 451
doi: 10.1016/0020-7403(93)90035-S
|
| [20] |
Naveena, Ganesh Kumar J, Mathew M D. Finite element analysis of plastic deformation during impression creep [J]. J. Mater. Eng. Perform., 2015, 24: 1741
doi: 10.1007/s11665-014-1225-z
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|