Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 225-230    DOI: 10.11901/1005.3093.2019.364
ARTICLES Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of Mg-13Gd-1Zn Alloy
ZHEN Rui1,2(),WU Zhen1,XU Hengyuan1,TAN Shuyong1,2
1. School of Material Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
Cite this article: 

ZHEN Rui,WU Zhen,XU Hengyuan,TAN Shuyong. Microstructures and Mechanical Properties of Mg-13Gd-1Zn Alloy. Chinese Journal of Materials Research, 2020, 34(3): 225-230.

Download:  HTML  PDF(3529KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A ternary alloy with composition of Mg-13Gd-1Zn (%, mass fraction) was prepared by conventional smelting and casting technique. The microstructure and mechanical properties of the as-cast, as-annealed, as-extruded and as-aged (T5) alloy were investigated. The results show that the microstructure of the as-cast alloy consists of α-Mg matrix, (Mg, Zn)3Gd eutectic and a 14H long period staking ordered (14H-LPSO) phase. The significant increase of 14H-LPSO phase after annealing and ageing (T5) treatment in the alloy microstructure indicates that the precipitation of the 14H-LPSO phase occurs in a wide temperature range (200~510oC). The β' and β1 precipitates have also been observed in the alloy after ageing (T5) treatment. Under the combined action of precipitation strengthening and LPSO strengthening, the tensile strength, yield strength and elongation of the alloy are 397 MPa, 197 MPa and 2.56%, respectively. The creep properties of the Mg-13Gd-1Zn alloy are higher than those of the WE54 alloy in the two experimental conditions of 200oC/80 MPa and 200oC/120 MPa.

Key words:  metallic materials      magnesium alloy      hot extrusion      ageing treatment      long period stacking ordered structures (LPSO)      creep     
Received:  22 July 2019     
ZTFLH:  TG146.22  
Fund: Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province(201911276034Y);the Research Foundation of Nanjing Institute of Technology(ZKJ201604);Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.364     OR     https://www.cjmr.org/EN/Y2020/V34/I3/225

Fig.1  X-ray diffraction patterns of the as-cast (a) and as-annealed (b) alloy
Fig.2  OM images of the alloy and corresponding SAED(EB//[112?0]α) pattern of the lamella phase in the alloy (a) as-cast, (b) as-annealed
Fig.3  OM (a) and SEM (b) images of the as-extruded alloy
Fig.4  SEM (a) and TEM (b) images of the alloy after T5 treatment
StateUST/MPaYST/MPaElongation/%
As-cast1751422.40
As-extruded34014310.3
T53971972.56
Table 1  Tensile properties of the Mg-13Gd-1Zn alloy at room temperature
Fig.5  TEM image and corresponding SAED(EB//[112?0]α) pattern of 14H-LPSO structure in ageing (T5) alloy after tensile test
Fig.6  Creep curves of the alloys at 200℃/80 MPa (a) and 200℃/120 MPa (b) for 100 h
AlloyT/℃σ/MPaε/s-1×10-9

100 h

εt /%

tf /h
Mg-13Gd-1Zn200805.360.24>100
12011.60.51>100
WE54200806.580.32>100
12024.50.96>100
Table 2  Creep properties of alloys studied at 200℃/80 MPa and 200℃/120 MPa
Fig.7  SEM micrograph of Mg-13Gd-1Zn alloy after creep at 200℃/80 MPa for 100 h
[1] Amiya K, Ohsuna T, Inoue A. Long-Period Hexagonal Structures in Melt-Spun Mg97Ln2Zn1 (Ln=Lanthanide Metal) Alloys [J]. Mater Trans., 2003, 44(10): 2151
[2] Yamasaki M, Anan T, Yoshimoto Set al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate [J]. Scr. Mater. 2005, 53 (7): 799
[3] Yamasaki M, Sasaki M, Nishijima Met al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Mater., 2007, 55(20): 6798
[4] Itoi T, Seimiya T, Kawamura Yet al. Long period stacking structures observed in Mg97Zn1Y2 alloy [J]. Scr. Mater., 2004, 51(2): 107
[5] Wu Y J, Lin D L, Zeng X Q, et al. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy [J]. J. Mater. Sci., 2009, 44(6): 1607
[6] Zeng X Q, Wu Y J, Peng L M, et al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy [J]. Acta Metall. Sin., 2010, 46(9): 1041
[6] 曾小勤, 吴玉娟, 彭立明等. Mg-Gd-Zn-Zr合金中的 LPSO 结构和时效相 [J]. 金属学报, 2010, 46(9): 1041
[7] Zhen R, Sun Y, Xue F, et al. Effect of heat treatment on the microstructures and mechanical properties of the extruded Mg-11Gd-1Zn alloy [J]. J. Alloy Compd., 2013, 550: 273
[8] Wu X, Pan F, Cheng R, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy [J]. Mater. Sci. Eng. A, 2018, 726: 64
[9] Zhao Q, Wu Y, Rong W, et al. Effect of applied pressure on microstructures of squeeze cast Mg-15Gd-1Zn-0.4Zr alloy [J]. J. Magn. Alloy, 2018, 6: 197
[10] Du Y X, Wu Y J, Peng L M, et al. Formation of lamellar phase with18R-type LPSO structure in an as-cast Mg96Gd3Zn1 (at%) alloy [J]. Mater. Lett., 2016, 169: 168
[11] Wu X, Pan F S, Cheng R J, et al. Formation of long period stacking ordered phases in Mg-10Gd-1Zn-0.5Zr (wt.%) alloy [J]. Mater. Charact., 2019, 147: 50
[12] Li J C, He Z L, Fun P H, et al. Heat treatment and mechanical properties of a high-strength cast Mg-Gd-Zn alloy [J]. Mater. Sci. Eng. A, 2016, 651: 745
[13] Wen K, Liu K, Wang Z, et al. Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy [J]. Mater. Sci. Eng. A, 2016, 674: 33
[14] Wu X, Pan F, Cheng R, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy [J]. Mater. Sci. Eng. A, 2018, 726: 64
[15] Rong W, Zhang Y, Wu Y, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion [J]. Materials Characterization, 2017, 131: 380
[16] Rong W, Zhang Y, Wu YJ et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys [J]. Materials Science & Engineering A,2019, 740-741: 262
[17] Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng. A, 2014, 595: 224
[18] Srinivasan A, Dieringa H, Mendis C L, et al. Creep behavior of Mg-10Gd-xZn (x=2 and 6wt%) alloys [J]. Mater. Sci. Eng. A, 2016, 649: 158
[19] Garcés G, O?orbe E, Dobes F, et al. Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy [J]. Mater. Sci. Eng. A, 2012, 539: 48
[20] Yin D D, Wang Q D, Boehlert C J, et al. Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) at 573 K [J]. Mater. Sci. Eng. A, 2012, 546: 239
[21] Jono Y, Yamasaki M, Kawamura Y. Quantitative evaluation of creep strain distribution in an extruded Mg-Zn-Gd alloy of multimodal microstructure [J]. Acta Mater., 2015, 82(82): 198
[22] Wu Y J, Zeng X Q, Lin D L, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K [J]. J. Alloy Compd., 2009, 477(1-2): 193
[23] Wen K, Liu K, Wang Z, et al. Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy [J]. Mater. Sci. Eng. A, 2016, 674: 33
[24] Li Y, Xiao W, Wang F, et al. The roles of long period stacking ordered structure and Zn solute in the hot deformation behavior of Mg-Gd-Zn alloys [J]. J. Alloy Compd., 2018, 745: 33
[25] Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys [J]. Acta Mater., 2010, 58(8): 2936
[26] Yamasaki M, Sasaki M, Nishijima M, et al. Format ion of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Mater., 2007, 55(20): 6798
[27] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Mater.,2007, 55(12): 4137
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!