|
|
Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25 |
LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie( ) |
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie. Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25. Chinese Journal of Materials Research, 2023, 37(11): 846-854.
|
Abstract The creep behavior at 130~240 MPa /973~1023 K of Sanicro25 steel for ultra-supercritical power plants were investigated by OM, SEM and TEM. The results showed that the minimum creep rate increases with the increasing temperature and applied stress. Based on the characteristics of the minimum creep rate, the stress exponents of 7.6~8.2 and the apparent activation energy of 496.7~531.8 kJ/mol can be acquired for the creep process. Nano-scale Cu-rich phase and MX phase precipitated in the matrix imped the dislocation motion, thus resulted in the emerging of creep threshold stress. The creep threshold stresses can be estimated by the linear extrapolation method, and which decrease with the increase in temperature. By invoking the concept of the threshold stresses to modify the constitutive equation, $\dot{\varepsilon}_{\min }=A_{2}\left[\left(\sigma-\sigma_{\mathrm{th}}\right) / G\right]^{n} \exp (-Q / R T)$, the normalization of the minimum creep rate can be acquired at various temperatures; Meanwhile, the true stress exponent (n=5) and the true apparent activation energy (Q=286.6kJ/mol approximately equal to the γ-Fe self-diffusion activation energy) can be identified. The creep rate-controlling mechanism was determined to be dislocation climbing mechanism assisted by lattice self-diffusion.
|
Received: 08 November 2022
|
|
Fund: National Natural Science Foundation of China(U1610256);National Natural Science Foundation of China(51901035) |
Corresponding Authors:
ZHAO Jie, Tel: (0411)84709076, E-mail: jiezhao@dlut.edu.cn
|
1 |
Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers [J]. Renew. Sust. Energ. Rev., 2011, 15(5): 2262
doi: 10.1016/j.rser.2011.02.015
|
2 |
Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29(3): 195
|
|
于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29(3): 195
doi: 10.11901/1005.3093.2014.610
|
3 |
Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30(11): 841
doi: 10.11901/1005.3093.2015.478
|
|
郭 岩, 王彩侠, 李太江 等. 700℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30(11): 841
|
4 |
Polák J, Petráš R, Heczko M, et al. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature [J]. Mater. Sci. Eng. A. 2014, 615: 175
doi: 10.1016/j.msea.2014.07.075
|
5 |
Rutkowski B, Gil A. A Czyrska-Filemonowicz Microstructure and chemical composition of the oxide scale formed on the sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
|
6 |
Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441(1): 650
doi: 10.1016/j.jnucmat.2012.04.006
|
7 |
Korzhavyi P A, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength [J]. Mater. Sci. Eng. A. 2015, 626: 213
doi: 10.1016/j.msea.2014.12.057
|
8 |
Chai G, Forsberg U. 12 - Sanicro 25: An Advanced High-strength, Heat-resistant Austenitic Stainless Steel [M]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017: 391-421
|
9 |
Li Y, Wang X. Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants [J]. Mater. Sci. Eng. A. 2020, 775:138991
doi: 10.1016/j.msea.2020.138991
|
10 |
Zhang Y, Jing H, Xu L, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng. A. 2017, 686: 102
doi: 10.1016/j.msea.2017.01.002
|
11 |
Zhang Y, Jing H, Xu L, et al. Microstructure and texture study on an advanced heat-resistant alloy during creep [J]. Mater. Charact., 2017, 130: 156
doi: 10.1016/j.matchar.2017.05.037
|
12 |
Song K, Zhao L, Xu L, et al. Dislocation creep modelling of Sanicro 25 based on microstructural evolution and particle hardening mechanism [J]. Theor. Appl. Fract. Mec., 2021, 112: 102893
doi: 10.1016/j.tafmec.2021.102893
|
13 |
Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng. A. 2018, 722: 88
doi: 10.1016/j.msea.2018.02.095
|
14 |
Zhao L, Song K, Zhang Y, et al. Creep rupture assessment of new heat-resistant Sanicro 25 steel using different life prediction approaches [J]. J. Mater. Eng. Perform., 2019, 28(12): 7464
doi: 10.1007/s11665-019-04478-1
|
15 |
Wang D Y, Wang L Y, Feng X, et al. Creep properties of pre-deformed F316 stainless steel [J]. Chin. J. Mater. Res., 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
|
|
王冬颖, 王立毅, 冯 鑫 等. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能 [J]. 材料研究学报, 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
|
16 |
Li H F, Zhao J, Cheng C Q, et al. Prediction of high temperature creep deformation and rupture life on HP heat reisistanct alloy using Zc parameter [J]. J. Mater. Eng., 2018, 46(3): 112
|
|
李会芳, 赵 杰, 程从前 等. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法 [J]. 材料工程, 2018, 46(3): 112
doi: 10.11868/j.issn.1001-4381.2016.000354
|
17 |
He J, Sandström R, Vujic S. Creep, low cycle fatigue and creep-fatigue properties of a modified HR3C [J]. Proce. Struct. Integrity. 2016, 2: 871
|
18 |
Kassner M E. Chapter 1-Fundamentals of Creep in Materials [M]. Fundamentals of Creep in Metals and Alloys (Third Edition), Butterworth-Heinemann, Boston, 2015: 1-6
|
19 |
Alomari A S, Kumar N, Murty K L. Creep behavior and microstructural evolution of a Fe-20Cr-25Ni (mass percent) austenitic stainless steel (Alloy 709) at elevated temperatures [J]. Metall. Mater. Trans. A. 2019, 50(2): 641
|
20 |
Park D B, Hong S M, Lee K H, et al. High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel [J]. Mater. Charact., 2014, 93: 52
doi: 10.1016/j.matchar.2014.03.012
|
21 |
Ou P, Li L, Xie X F, et al. Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures [J]. Acta. Metall. Sin-Engl. 2015, 28(11): 1336
doi: 10.1007/s40195-015-0331-8
|
22 |
Meng L J, Sun J, Xing H. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures [J]. J. Nucl. Mater., 2012, 427(1): 116
doi: 10.1016/j.jnucmat.2012.04.016
|
23 |
Guo Q Y, Li Y M, Chen B, et al. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel [J]. Acta Metall. Sin., 2021, 57(01): 82
|
|
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57(01): 82
|
24 |
Latha S, Mathew M D, Parameswaran P, et al. Creep behaviour of 14Cr-15Ni-Ti stainless steel at 923K [J]. Mater. Sci. Eng. A, 2010, 527(20): 5167
doi: 10.1016/j.msea.2010.04.043
|
25 |
Wang C Y, Cepeda-Jiménez C M, Pérez-Prado M T. Dislocation-particle interactions in magnesium alloys [J]. Acta Mater., 2020, 194: 190
doi: 10.1016/j.actamat.2020.04.055
|
26 |
Arzt E, Ashby M F. Threshold stresses in materials containing dispersed particles [J]. Scrip. Mater., 1982, 16(11): 1285
|
27 |
Ding Z, Zhang J, Wang C S, et al. Dislocation configuration in DZ125 Ni-based superalloy after high temperature stress rupture [J]. Acta Metall. Sin., 2011, 47(01): 47
|
|
丁 智, 张 军, 王常帅 等. DZ125镍基高温合金高温持久断裂后的位错组态 [J]. 金属学报. 2011, 47(01): 47
|
28 |
Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Woodhead Publishing, 2010: 52-53
|
29 |
Murty K L, Mohamed F A, Dorn J E. Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg [J]. Acta. Mater., 1972, 20(8): 1009
doi: 10.1016/0001-6160(72)90135-6
|
30 |
Murty K L, Dentel G, Britt J. Effect of temperature on transitions in creep mechanisms in class-A alloys [J]. Mater. Sci. Eng. A, 2005, 410-411: 28
doi: 10.1016/j.msea.2005.08.006
|
31 |
Yuan C, Guo J T, Yang H C. Resistant stress for creep in cast nickel-base superalloys [J]. Acta Metall. Sin., 2002, 11: 1149
|
|
袁 超, 郭建亭, 杨洪才. 铸造镍基高温合金的蠕变阻力 [J]. 金属学报, 2002, 11: 1149
|
32 |
Alomari A S, Kumar N, Murty K L. Serrated yielding in an advanced stainless steel Fe-25Ni-20Cr (wt%) [J]. Mater. Sci. Eng. A, 2019, 751: 292
doi: 10.1016/j.msea.2019.02.023
|
33 |
Maruyama K, 8-Fundamental Aspects of Creep Deformation and Deformation Mechanism Map [M]. Creep-Resistant Steels, Woodhead Publishing 2008: 265-278
|
34 |
Ovid'ko I A. 14-Enhanced Ductility and Its Mechanisms in Nanocrystalline Metallic Materials [M]. Nanostructured Metals and Alloys, Woodhead Publishing 2011: 430-458
|
35 |
Li Y, Mohamed F A. An investigation of creep behavior in an SiC 2124 Al composite [J]. Acta Mater., 1997, 45(11): 4775
doi: 10.1016/S1359-6454(97)00130-4
|
36 |
Vo N Q, Bayansan D, Sanaty-Zadeh A, et al. Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy [J]. Materialia, 2018, 4: 65
doi: 10.1016/j.mtla.2018.08.030
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|