Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (2): 151-160    DOI: 10.11901/1005.3093.2019.286
ARTICLES Current Issue | Archive | Adv Search |
Primary Creep and Steady-State Creep of Ti65 Alloy
YUE Ke1,2,LIU Jianrong1(),YANG Rui1,WANG Qingjiang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

YUE Ke, LIU Jianrong, YANG Rui, WANG Qingjiang. Primary Creep and Steady-State Creep of Ti65 Alloy. Chinese Journal of Materials Research, 2020, 34(2): 151-160.

Download:  HTML  PDF(2931KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The creep deformation behavior and relevant microscopic deformation mechanisms of Ti65 alloy were investigated via tensile creep test by stresses in the range of 120~160 MPa at 600~650oC and TEM observation. The results show that the primary creep deformation mechanism is dominated by the process of climbing-controlled dislocations crossing the α2 phases and the creep mechanism in the steady-state creep stage is dominated by the process of diffusion-controlled dislocation climbing at the α/β interfaces, and the stress index of steady-state creep stage varies from 5 to 7. The hindering of dislocation motions by α2 phases is the dominating process to strengthen the high-temperature creep resistance of Ti65 alloy during the primary creep stage. The silicide precipitates distributed along α/β phase boundaries, impede the dislocation motions and restrict the grain boundary slip (GBS), which is the dominating strengthening mechanism during the steady-state creep stage.

Key words:  microstructure and properties of materials      creep deformation      creep test      Ti65 alloy     
Received:  03 June 2019     
ZTFLH:  TG142.25  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.286     OR     https://www.cjmr.org/EN/Y2020/V34/I2/151

Fig.1  Microstructure of Ti65 alloy before tensile creep (a) SEM image; (b) TEM bright field image
Fig.2  Geometric dimensions of creep test specimen (unit:mm)
Fig.3  A typical creep strain-time curve
Fig.4  Strain-time curves for creep of Ti65 alloy with different applied stresses at (a) 600℃, (b) 630℃, and (c) 650℃
Test conditionsεT/%rAdjusted R2
600℃120 MPa0.2150.00610.9820
140 MPa0.2050.00810.9822
160 MPa0.1460.01320.9912
630℃120 MPa0.2250.00850.9945
140 MPa0.2160.01100.9984
160 MPa0.1820.01480.9772
650℃120 MPa0.2600.01130.9960
140 MPa0.2330.04780.9862
160 MPa0.0860.04070.9973
Table 1  Numerical fitting results of creep curves under different conditions (creep stages I and II)
Test conditions?s/h,×10-6εin/%εinter/%εp/% (tos, h)
600℃120 MPa0.730.1380.3530.420 (931 h)
140 MPa1.260.1470.3520.446 (746 h)
160 MPa3.080.1760.3220.451 (420 h)
630℃120 MPa2.620.1370.3620.515 (576 h)
140 MPa6.020.1500.3660.652 (470 h)
160 MPa15.90.1810.3630.639 (191 h)
650℃120 MPa5.670.1320.3920.668 (487 h)
140 MPa25.50.1600.3930.811 (159 h)
160 MPa42.70.2150.3010.610 (72 h)
Table 2  Statistics of creep strains and steady-state creep rates
Fig.5  Relationships of steady-state creep strain (?s), creep strains, and time at the onset of creep stage II (tos) with test temperature, and applied stresses. The values of ?s and tos refer to the right Y-axis
Fig.6  Compensated steady-state strain rates versus mo-dulus compensated steady-state stress for creep behavior of Ti65 alloy
Fig.7  TEM images of crept samples at (a) 600℃/160 MPa, (b) 650℃/160 MPa. The residual β phase in colonies partially dissolved and the silicides coarsened significantly after creep deformation
Fig.8  Dislocation configurations of crept specimens under different conditions (a) 600℃/120 MPa, (b) 600℃/140 MPa, (c) 600℃/160 MPa, (d) 630℃/120 MPa, (e) 630℃/140 MPa, (f) 630℃/160 MPa, (g) 650℃/120 MPa, (h) 650℃/140 MPa, (i) 650℃/120 MPa
Fig.9  Dislocation configurations of Ti65 alloy at 650℃ with the applied stress 160 MPa after creep for (a) 200 h, and (b) 1000 h
Fig.10  Interactions of silicides and dislocations. (a) 600℃/160 MPa, (b) 630℃/160 MPa, and (c) 650℃/120 MPa
[1] ES-Souni M. Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti-5.8 Al-4.0 Sn-3.5 Zr-0.7 Nb-0.35 Si-0.06 C (Timetal 834): part I. Primary and steady-state creep [J]. Mater. Charact., 2001, 46(5): 365
[2] Hayes R. Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure [J]. Acta Mater., 2002, 50(20): 4953
[3] Viswanathan G, Karthikeyan S, Hayes R, et al. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation [J]. Acta Mater., 2002, 50(20): 4965
[4] Rosenberger A H, Madsen A, Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100 [J]. J Mater. Eng. Perform., 1995, 4(2): 182
[5] Chandravanshi V, Sarkar R, Kamat S V, et al. Effects of thermomechanical processing and heat treatment on the tensile and creep properties of boron-modified near alpha titanium Alloy Ti-1100 [J]. Metall. Mater. Trans. A, 2012, 44(1): 201
[6] Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23(1): 1
[6] 赵亮, 刘建荣, 王清江等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23(1): 1
[7] Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng. A, 2017, 688: 322
[8] ES-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 [J]. Metall. Mater. Trans. A, 2001, 32(2): 285
[9] Balasundar I, Raghu T, Kashyap B P. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime [J]. Mater. Sci. Eng. A, 2014, 609: 241
[10] Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat Mater, 2016, 15(8): 876
[11] Klein T, Usategui L, Rashkova B, et al. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures [J]. Acta Mater., 2017, 128: 440
[12] Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature [J]. Prog. Mater. Sci., 1968, 13: 323
[13] Kassner M E. Fundamentals of creep in metals and alloys [M]. Butterworth-Heinemann, 2015.
[14] Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007
[14] 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007
[15] Blum W, Eisenlohr P. Dislocation mechanics of creep [J]. Mater. Sci. Eng. A, 2009, 510-511: 7
[16] Chokshi A H. An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina [J]. J. Mater. Sci., 1990, 25(7): 3221
[17] Langdon T G. Grain boundary sliding as a deformation mechanism during creep [J]. Philos. Mag., 2006, 22(178): 689
[18] Langdon T G. Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms [J]. Metall. Mater. Trans. A, 2002, 33(2): 249
[19] Kassner M E, Kumar P, Blum W. Harper-Dorn creep [J]. Int. J. Plast., 2007, 23(6): 980
[20] Kumar P, Kassner M E. Theory for very low stress (“Harper-Dorn”) creep [J]. Scr. Mater., 2009, 60(1): 60
[21] Langdon T G. Identifying creep mechanisms in plastic flow [J]. Z Metallk, 2005, 96(6): 522
[22] Kassner M E, Rez-Prado M T. Five-power-law creep in single phase metals and alloys [J]. Prog. Mater. Sci., 2000, 45(1): 1
[23] Blum W. Creep of crystalline materials: experimental basis, mechanisms and models [J]. Mat. Sci. Eng. a-Struct., 2001, 319: 8
[24] Viswanathan G B, Vasudevan V K, Mills M J. Modification of the jogged-screw model for creep of γ-TiAl [J]. Acta Mater., 1999, 47(5): 1399
[25] Morrow B M, Kozar R W, Anderson K R, et al. An examination of the use of the Modified Jogged-Screw model for predicting creep behavior in Zircaloy-4 [J]. Acta Mater., 2013, 61(12): 4452
[26] Xiang Y X, Deng X M, Xuan F Z, et al. Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys [J]. J. Appl. Phys., 2012, 111(10): 104905
[27] Le? K T, Svoboda J, Dlouh A. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics [J]. Int. J. Plast., 2017, 97: 1
[28] Flower H M, Swann P R, West D R F. Silicide precipitation in the Ti-Zr-Al-Si system [J]. Metall. Mater. Trans. B, 1971, 2(12): 3289
[29] Shamblen C, Redden T. Creep resistance and high-temperature metallurgical stability of titanium alloys containing gallium [J]. Metall. Trans., 1972, 3(5): 1299
[30] Onodera H, Nakazawa S, Ohno K, et al. Creep properties of α+α2 high temperature titanium alloys designed by the aid of thermodynamics [J]. ISIJ. Int, 1991, 31(8): 875
[31] Madsen A, Ghonem H. Separating the effects of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593℃ in a near-alpha titanium alloy [J]. J. Mater. Eng. Perform., 1995, 4(3): 301
[32] Dong F, He G Q, Zhang G T. Research development of the effect of Si element on titanium alloy [J]. Heat Treatment of Metals, 2007, 32(11): 5
[32] 董飞, 何国强, 张贵田. 合金元素 Si 在钛合金中作用的研究进展 [J]. 金属热处理, 2007, 32(11): 5
[33] Assadi A T K, Flower H M, West D R F. Creep resistance of certain alloys of the Ti-AI-Zr-Mo-Si system [J]. Met. Technol., 2013, 6(1): 16
[34] Neeraj T, Mills M. Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.% Al alloy [J]. Mater. Sci. Eng. A, 2001, 319: 415
[35] Webster G, Cox A, Dorn J. A relationship between transient and steady-state creep at elevated temperatures [J]. Met. Sci. J., 1969, 3(1): 221
[36] Ajaja O, Ardell A. Microstructure and transient creep in an austenitic stainless steel [J]. Philos. Mag. A, 1979, 39(1): 65
[37] Choudhary B, Samuel E I. Creep behaviour of modified 9Cr-1Mo ferritic steel [J]. J. Nucl. Mater., 2011, 412(1): 82
[38] Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55(3): 1067
[39] Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750℃ and 750 MPa [J]. Mater. Sci. Eng. A, 2001, 300(1-2): 125
[40] ES-Souni M. Primary and anelastic creep of a near α-Ti alloy and their dependencies on stress and temperature [J]. Mech. Time-Depend. Mater., 1998, 2(3): 211
[41] ES-Souni M. Primary, secondary and anelastic creep of a high temperature near α-Ti alloy Ti6242Si [J]. Mater. Charact., 2000, 45(2): 153
[42] Gollapudi S, Satyanarayana D V V, Phaniraj C, et al. Transient creep in titanium alloys: Effect of stress, temperature and trace element concentration [J]. Mater. Sci. Eng. A, 2012, 556: 510
[43] Chen W, Boehlert C. Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1 Si (weight percent) [J]. Metall. Mater. Trans. A, 2009, 40(7): 1568
[44] Phaniraj C, NandagopaL M, Mannan S, et al. The relationship between transient and steady state creep in AISI 304 stainless steel [J]. Acta Metall. Mater., 1991, 39(7): 1651
[45] Phaniraj C, RAO K B S, SL M. Creep deformation behaviour and kinetic aspects of 9Cr-1Mo ferritic steel [J]. ISIJ. Int., 2001, 41(Suppl): S73
[46] Nabarro F R N. Creep in commercially pure metals [J]. Acta Mater., 2006, 54(2): 263
[47] Hofmann H, Frommeyer G, Derder C. Creep mechanisms in particle strengthened α-Titanium-Ti2Co alloys [J]. Mater. Sci. Eng. A, 1998, 245(1): 127
[48] Paton N E, Mahoney M W. Creep of titanium-silicon alloys [J]. Metall. Trans. A, 1976, 7(11): 1685
[49] Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2019.
[50] Yue K, Liu J R, Zhu S X, et al. Origins of different tensile behaviors induced by cooling rate in a near alpha titanium alloy Ti65 [J]. Mater., 2018, 1: 128
[51] Miller W, Chen R, Starke E. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans. A, 1987, 18(8): 1451
[52] Chan K S. A micromechanical analysis of the yielding behavior of individual widmanst?tten colonies of an α+ β titanium alloy [J]. Metall. Mater. Trans. A, 2004, 35(11): 3409
[53] Marquis E A, Dunand D C. Model for creep threshold stress in precipitation-strengthened alloys with coherent particles [J]. Scr. Mater., 2002, 47(8): 503
[54] Ivanov L, Yanushkevich V. The mechanism of fatigue creep of body-centered cubic metals [J]. Fiz. Metal. Metal., 1964, 17: 112
[55] Blum W. Role of Dislocation Annihilation during Steady-State Deformation [J]. Phys. Status Solidi B, 1971, 45(2): 561
[56] Weertman J, Wilshire B, Owen D. Natural Fifth Power Creep law for Pure Metals [M]. Creep and Fracture of Engineering Materials and Structures. Pineridge Press. 1984
[57] Li H, Boehlert C J, Bieler T R, et al. Analysis of the deformation behavior in tension and tension-creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23℃ and 455℃) using in situ SEM experiments [J]. Metall. Mater. Trans. A, 2014, 45(13): 6053
[58] Li H, Boehlert C J, Bieler T R, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt%) usingin-situ SEM experiments [J]. Philos. Mag., 2012, 92(23): 2923
[59] Li H, Mason D E, Yang Y, et al. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728?K [J]. Philos. Mag., 2013, 93(21): 2875
[60] Dastidar I G, Khademi V, Bieler T R, et al. The tensile and tensile-creep deformation behavior of Ti-8Al-1Mo-1V(wt%) [J]. Mater. Sci. Eng. A, 2015, 636: 289
[1] Yue WU,Jianping LI,Zhong YANG,Yongchun GUO,Zhijun MA,Minxian LIANG,Tong YANG,Dong TAO. Creep Behavior of a High Strength Compacted Graphite Cast Iron[J]. 材料研究学报, 2019, 33(1): 43-52.
No Suggested Reading articles found!