Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 694-702    DOI: 10.11901/1005.3093.2021.169
ARTICLES Current Issue | Archive | Adv Search |
Effect of Ru on Creep Properties of a High Tungsten Containing Ni-based Single Crystal Superalloy
LIANG Shuang1(), LIU Zhixin1, LIU Lirong2, LIANG Jinguang1, JI Liangbo1, SHAO Huayang1
1.School of Mechanical and Power Engineering, Yingkou Institute of Technology, Yingkou 115000, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

LIANG Shuang, LIU Zhixin, LIU Lirong, LIANG Jinguang, JI Liangbo, SHAO Huayang. Effect of Ru on Creep Properties of a High Tungsten Containing Ni-based Single Crystal Superalloy. Chinese Journal of Materials Research, 2021, 35(9): 694-702.

Download:  HTML  PDF(9858KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The creep property of 4 nickel-based single crystal superalloys with 4% W, 6% W and 6%W+2%Ru is comparatively studied by creep testing machine, scanning electron microscope, three dimensional atom probe and X-ray diffractometer, aiming to clarify the effect of Ru on the creep performance of the alloy. The results show that the increase in W content will impair the creep performance of the alloy, the creep life of the alloy with 6%W decreases to 58 h at 1070℃/137 MPa. The alloying with Ru can promote the distribution of element W in γ/γ phase more reasonably, whilst inhibit the diffusion of element W from γ phase to γ phase during high temperature creep testing. Therefore, the alloy with 6%W+2%Ru presents a high creep life of 383 h at 1070℃/137 MPa, while no TCP precipitate in the alloy may be observed after high temperature creep testing. During the high temperature creep of the three alloys, the γ phase can form perpendicular to the direction of stress axis, and the TCP phase can destroy the continuity of the raft-like structure, resulting in the increase of the kinking degree of γ/γ phases, which is the main reason for the low creep life of the Ru-free 6%W alloy.

Key words:  metallic materials      creep property      element distribution determination      nickel-based single crystal superalloy      Ru      W     
Received:  05 March 2021     
ZTFLH:  TG132.3  
Fund: Natural Science Foudation of Liaoning Province(2019-ZD-0376 & 2021-YKLH-04);Excellent Science and Technology Talents Support Program of Yingkou Institute of Technology(RC201908);Enterprise Doctor Entrepreneurship and Innovation Program of Yingkou(QB-2019-09);Innovation and Entrepreneurship Program of Yingkou Institute of Technology(202014435035)
About author:  LIANG Shuang, Tel: 15041761117, E-mail: 70080952@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.169     OR     https://www.cjmr.org/EN/Y2021/V35/I9/694

AlloyAlTaCrCoMoWRuNi
Alloy 15.987.625.825.976.254.070.00
Alloy 26.017.505.795.906.185.930.00Bal.
Alloy 35.997.555.805.896.075.961.98
Table1  Chemical composition of the alloys (mass fraction, %)
Fig. 1  Schematic diagram of the creep specimen (unit: mm)
Fig.2  Microstructures of different alloys after complete heat treatment of alloy 1 (a), alloy 2 (b), and alloy 3 (c)
Fig.3  Creep curves of different alloys at 1070℃/137 MPa
Fig. 4  The element distribution of W in alloy 1 (b) and alloy 3 (c) before creep and in alloy 1 (d) and alloy 3 (e) after creep at high temperature and that of Al in alloy 1 (a) before creep
AlloyRegionBefore creepAfter creep
AlWRuAlWRu
Alloy 1γ phase2.722.3202.412.820
γ' phase18.910.81014.230.320
Ratio6.95/11/2.85-5.90/11/8.81-
Alloy 3γ phase4.692.273.134.482.333.19
γ' phase18.201.731.4115.311.691.38
Ratio3.88/11/1.311/2.213.42/11/1.381/2.31
Table 2  Distribution of elements in γ′/γ phases of various alloys (atomic fraction, %)
Fig.5  Distribution of Ru and W element at the interface of γ′/γ phase before/after creep of alloy 1 (b) and alloy 3 (a, c)
Fig.6  XRD curves of alloy 1 at heat-treated states (a) and at crept states (c) and alloy 3 at heat-treated states (b) and at crept states (d)
ProjectFree Ru2%Ru
Heat treatedγ/nm0.359880.36176
γ'/nm0.358560.35998
Misfit/%-0.367-0.4932
After creepγ/nm0.361460.36391
γ'/nm0.360070.36107
Misfit/%-0.385-0.783
Table 3  Lattice parameters and misfit of γ and γ phases for free-Ru and 2%Ru alloys
Fig.7  Microstructures of alloy3 (a) amd alloy2 (b) after creep fracture under the same conditions
Fig.8  Microstructure of alloy 3 after creep at 1070℃/137 MPa for 50 hours (a), 200 hours (b) and creep fracture (c)
1 Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
宫声凯, 尚勇, 张继等. 我国典型金属间化合物基高温结构材料的研究进展与应用 [J]. 金属学报, 2019, 55: 1067
2 Su D L. Creep behaviors and effecting factors of Re/Ru containing nickel-based single crystal superalloys [D]. Shenyang: Shenyang University of Technology, 2018
舒德龙. 含Re/Ru镍基单晶合金的蠕变行为及影响因素 [D]. 沈阳: 沈阳工业大学, 2018
3 Zhang S Q, Wang D, Wang D, et al. Influence of Re on microstructures of a directionally solidified Ni-based superalloy [J]. Acta Metall. Sin., 2016, 52: 851
张思倩, 王栋, 王迪等. Re对一种定向凝固镍基高温合金微观组织的影响 [J]. 金属学报, 2016, 52: 851
4 Huang T W, Lu J, Xu Yao, et al. Effects of rhenium and tantalum on microstructural stability of hot-corrosion resistant single crystal superalloys aged at 900℃ [J]. Acta Metall. Sin., 2019, 55: 1427
黄太文, 卢晶, 许瑶等. Re和Ta对抗热腐蚀单晶高温合金900℃长期时效组织稳定性的影响 [J]. 金属学报, 2019, 55: 1427
5 Chang J X, Wang D, Dong J S, et al. Effect of rhenium addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Chin. J. Mater. Res., 2017, 31: 695
常剑秀, 王栋, 董加胜等. 铼对镍基单晶高温合金恒温氧化行为的影响 [J]. 材料研究学报, 2017, 31: 695
6 Liu G, Liu L, Zhang S X, et al. Effects of Re and Ru on microstructure and segregation of ni-based single-crystal superalloys [J]. Acta Metall. Sin., 2012, 48: 845
刘刚, 刘林, 张胜霞等. Re和Ru对镍基单晶高温合金组织偏析的影响 [J]. 金属学报, 2012, 48: 845
7 Wang B, Zhang J, Pan X J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2017, 53: 298
王博, 张军, 潘雪娇等. W对第三代镍基单晶高温合金组织稳定性的影响 [J]. 金属学报, 2017, 53: 298
8 Neumeier S, Ang J, Hobbs R A, et al. Lattice misfit of high refractory ruthenium containing nickel-base superalloys [J]. Adv. Mater. Res., 2011, 278: 60
9 Yue Q S, Liu L, Yang W C, et al. Research progress of creep behaviors in advanced Ni-based single crystal superalloys [J]. Mater. Rep., 2019, 33: 479
岳全召, 刘林, 杨文超等. 先进镍基单晶高温合金蠕变行为的研究进展 [J]. 材料导报, 2019, 33: 479
10 Du Y L, Niu J P, Wang X G, et al. Effects of Ru addition on the microstructures of the Ni-based single crystal superalloys [J]. Rare Metal Mat. Eng., 2018, 47: 1248
杜云玲, 牛建平, 王新广等. 添加Ru对镍基单晶高温合金组织的影响 [J]. 稀有金属材料与工程, 2018, 47: 1248
11 Liu X G, Lei Q, Wang L, et al. Microstructural evolution of a third-generation single crystal superalloy DD33 during solution treatment [J]. Chin. J. Mater. Res., 2014, 28: 407
刘心刚, 雷强, 王莉等. 第三代单晶高温合金DD33固溶处理中组织的演变 [J]. 材料研究学报, 2014, 28: 407
12 O'Hara K S, Walston W S, Ross E W, et al. Nickel-base superalloy has improved combination of stress-rupture life microstructural stability [P]. U. S. Patent, 5482789, 1996
13 Liu S H. Synergistic effect of elements and optimization of composition for Ni-based superalloys [D]. Beijing: Tsinghua University, 2017
刘少华. 镍基单晶高温合金多元素协同效应与合金成分优化 [D]. 北京: 清华大学, 2017
14 Lapington M T, Crudden D J, Reed R C, et al. Characterization of oxidation mechanisms in a family of polycrystalline chromia-forming nickel-base superalloys [J]. Acta Mater., 2021, 206: 116626
15 Lapington M T, Crudden D J, Reed R C, et al. Atom probe characterization of oxide layers formed on polycrystalline nickel based superalloys [J]. Microsc. Microanal., 2017, 23: 700
16 Huo J J. Effect of Co、Cr、Mo、Ru additions on TCP phase evolution and creep behavior at 950℃ in 4th generation Ni-base single crystal superalloys [D]. Beijing: University of Science and Technology Beijing, 2018
霍嘉杰. Co、Cr、Mo、Ru对第四代镍基单晶TCP相演变及950℃蠕变行为影响的研究 [D]. 北京: 北京科技大学, 2018
17 Tian S G, Zhu X J, Tian N, et al. Influence of element Ru on microstructure and creep behavior of single crystal nickel-based superalloy [J]. Chin. J. Nonferrous Met., 2018, 28: 275
田素贵, 朱新杰, 田宁等. Ru对镍基单晶合金组织结构与蠕变行为的影响 [J]. 中国有色金属学报, 2018, 28: 275
18 Heckl A, Neumeier S, Göken M, et al. The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys [J]. Mater. Sci. Eng., 2011, 528A: 3435
19 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. China, 2012, 31(12): 1
孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1
20 Mukherjee A K, Bird J E, Dorn J E. Experimental correlations for high-temperature creep [J]. ASM Trans., 1968, 62: 155
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
No Suggested Reading articles found!