Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (12): 892-896    DOI: 10.11901/1005.3093.2019.242
ARTICLES Current Issue | Archive | Adv Search |
Creep Deformation of Three Samples Misaligned 15o from <001> Crystallographic Axis for a Nickel-based Single Crystal Superalloy DD413
Gang LI1,Siqian ZHANG2,Zongpeng ZHANG2,Di WANG3,Dong WANG3(),Jiasheng DONG3
1. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China
2. School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Gang LI,Siqian ZHANG,Zongpeng ZHANG,Di WANG,Dong WANG,Jiasheng DONG. Creep Deformation of Three Samples Misaligned 15o from <001> Crystallographic Axis for a Nickel-based Single Crystal Superalloy DD413. Chinese Journal of Materials Research, 2019, 33(12): 892-896.

Download:  HTML  PDF(3473KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The intermediate temperature creep behavior and microstructure of samples misaligned 15o from <001> crystallographic axis for a nickel-based single crystal superalloy were systematically investigated. The results show that the creep life of samples with orientation close to the <001>-<101> symmetry boundary is the longest, while the creep life of samples with orientation close to the <001>-<111> symmetry boundary is the shortest. Although the misorientation angles of the three samples deviated from <001> were all about 15o, their microstructure was obviously different. The deformation of the samples close to the <001>-<101> was mainly controlled by the sliding system of {111}<110>, while the deformation of the samples close to the <001>-<111> was mainly controlled by the sliding system of {111}<112>.

Key words:  metallic materials      single crystal superalloy      intermediate temperature creep      orientation      sliding system     
Received:  12 May 2019     
ZTFLH:  TG142  
Fund: National Key Research and Development Program of China(2016YFB0701403);National Natural Science Foundation of China(51101160);National Natural Science Foundation of China(51631008);National Science and Technology Major Project(2017-VI-0003-0073);National Science and Technology Major Project(W0112-025R1);National Natural Science Foundation Guiding Program of Liaoning Province(20180550998)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.242     OR     https://www.cjmr.org/EN/Y2019/V33/I12/892

Fig.1  Orientation of DD413 specimens in the standard stereographic triangle
Fig.2  Strain-time curves of the DD413 alloy misaligned 15o from <001> at 760℃/793 MPa
Fig.3  TEM micrographs for DD413 alloy misaligned 15o from <001> at primary creep stage (a) Sample A, (b) Sample B, (c) Sample C
Fig.4  TEM micrographs for DD413 alloy misaligned 15o from <001> at steady-stage creep stage (a) Sample A, (b) Sample B, (c) Sample C
Fig.5  TEM micrographs for DD413 alloy misaligned 15o from <001> at tertiary creep stage (a) Sample A, (b) Sample B, (c) Sample C
Fig.6  Directions of rotations in standard stereographic triangles for single crystals under (a) {111}<110> slip, the single crystals rotate toward <001>-<111>;(b) {111}<112>slip, the single crystals rotate toward <001>-<101>
[1] Caron P, Khan T. Improvement of creep strength in a nickel-base singlecrystal superalloy by heat treatment [J]. Mater. Sci. Eng., 1983, 61: 173
[2] Reed R C. The Superalloys Fundamentals and Applications [M].Cambridge: Cambridge University Press, 2006
[3] Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propuls. Power, 2006, 22: 361
[4] Zhang J, Lou L H. Basic research in development and application of cast superalloy [J]. Acta Metallurgica Sinica, 2018, 54(11): 1637
[4] (张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54(11): 1637)
[5] Fan Z D, Wang D, Lou L H. Tension-compression asymmetry of single crystal superalloy DD10 under low cycle fatigue deformation [J]. Chin. J. Mater. Res., 2014, 28(7): 535
[5] (范志东, 王 栋, 楼琅洪. 一种镍基单晶高温合金的低周疲劳拉-压不对称性行为 [J]. 材料研究学报, 2014, 28(7): 535)
[6] Rae C M F, Reed R C. Primary creep in single crystal superalloys: origins, mechanisms and effects [J]. Acta Mater., 2007, 55: 1067
[7] Condat M, Decamps B. Shearing of γ' precipitates by single a/2<110> matrix dislocations in a γ/γ' Ni-based superalloy [J]. Scr. Metall., 1987, 21: 607
[8] Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4 [J]. Acta Mater., 1996, 44: 1967
[9] Vorontsov V A, Shen C, Wang Y, et al. Shearing of γ' precipitates by a<112> dislocation ribbons in Ni-base superalloys: a phase fifield approach [J]. Acta Mater., 2010, 58: 4110
[10] Huis in't Veld A J, Boom G, Bronsveld P M, et al. Superlattice intrinsic stacking faults in γ' precipitates [J]. Scr. Metall., 1985, 19: 1123
[11] Hopgood A, Martin J W. The creep behaviour of a nickel-based single-crystal superalloy [J]. Mater. Sci. Eng., 1986, 82: 27
[12] Tian S G, Zhu X J, Wu J, et al. Inflfluence of temperature on stacking fault energy and creep mechanism of a single crystal nickel-based superalloy [J]. J. Mater. Sci. Technol., 2016, 32: 790
[13] Wen Z X, Zhang D X, Li S W, et al. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress [J]. J. Alloys Compd., 2017, 692: 301
[14] Pope D P, Ezz S S. Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ' [J]. Int. Metals Rev., 1984, 29: 136
[15] MacKay R A, Maier R D. The inflfluence of orientation on the stress rupture properties of nickel-base superalloy single crystals [J]. Metall. Trans. A, 1982, 13: 1747
[16] Prasad S C, Rajagopal K R, Rao I J. A continuum model for the anisotropic creep of single crystal nickel-based superalloys [J]. Acta Mater., 2006, 54: 1487
[17] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature [J]. Acta Mater., 1999, 47: 1549
[18] Gunturi S S K, MacLachlan D W, Knowles D M. Anisotropic creep in CMSX-4 in orientations distant from <001> [J]. Mater. Sci. Eng. A, 2000, 289: 289
[19] Zhang S H, Wang D, Zhang J, et al. Orientation dependence of stress rupture properties of a Ni-based single crystal superalloy at 760℃ [J]. J. Mater. Sci. Technol., 2012, 28: 229
[20] Yu J, Li J R, Zhao J Q, et al. Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760℃ and 785 MPa [J]. Mater. Sci. Eng. A, 2013, 560: 47
[21] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals [J]. Metall. Trans. A, 2000, 31: 2219
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!