Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (11): 824-836    DOI: 10.11901/1005.3093.2024.489
ARTICLES Current Issue | Archive | Adv Search |
Oxidation Behavior of T6-treated Al-5Zn-2Mg Al-alloy in Air at 400 oC and 550 oC
LU Cuilan1,2, XU Daokui1,2(), WANG Dongliang1,2, XU Xiangbo1,2, LV Xin1,2
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

LU Cuilan, XU Daokui, WANG Dongliang, XU Xiangbo, LV Xin. Oxidation Behavior of T6-treated Al-5Zn-2Mg Al-alloy in Air at 400 oC and 550 oC. Chinese Journal of Materials Research, 2025, 39(11): 824-836.

Download:  HTML  PDF(38303KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of the T6-treated Al-5Zn-2Mg (in mass fraction) Al-alloy in air at 400 oC and 550 oC for 0 h to 384 h is comparatively studied via intermittent weighing, SEM+EDS and XRD etc. The results show that the alloy is mainly composed of Al-matrix with η' phase, η phase and Fe-containing phase. Among them, the η' phase is dispersed within grains, the η phase is preferentially distributed along grain boundaries, and the Fe-containing phase is mainly banded along the extrusion direction (ED). During oxidation at 400 oC, the alloy exhibits good resistance to high temperature oxidation. Within the range of 0 h to 192 h, it shows a slight increase in mass. From 192 h to 384 h, the mass increase does not change significantly with time. After oxidation for 384 h, the mass increase is only 0.07 mg/cm2. Upon oxidation at 550 oC, the mass of the alloy increases significantly with the extension of time. After oxidation for 384 h, its mass increased by 0.33 mg/cm2. Besides, failure analysis shows that the surface morphology of the alloy remained basically unchanged after oxidation at 400 oC and no O enrichment was observed on the surface. However, after oxidation at 550 oC, the surface of the alloy turned gray-black, implying the occurrence of significant oxidation in the Fe-containing adjacent regions and its vicinity, resulting in the enrichment of Mg and O there.

Key words:  metallic materials      oxidation resistance      high temperature oxidation treatment      microstructure      oxidation kinetics      oxide film morphology     
Received:  11 December 2024     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(U21A2049);National Natural Science Foundation of China(52071220);National Natural Science Foundation of China(51971054)
Corresponding Authors:  XU Daokui, Tel: (024)23915897, E-mail: dkxu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.489     OR     https://www.cjmr.org/EN/Y2025/V39/I11/824

Fig.1  Surface BSE morphology of the T6-treated Al-5Zn-2Mg aluminum alloy (a) and EDS surface scan corresponding to amplification region (b)
Fig.2  XRD pattern of the T6-treated Al-5Zn-2Mg aluminum alloy
Fig.3  High-power SEM (a) and TEM (b) morphology of the T6-treated Al-5Zn-2Mg aluminum alloy
Fig.4  Variation trend of high-temperature oxidation mass gain of the T6-treated Al-5Zn-2Mg aluminum alloy at 400 oC and 500 oC
Fig.5  High-power optical morphologies of the T6-treated Al-5Zn-2Mg aluminum alloy surface after oxidation at 400 oC for 0 h (a), 48 h (b), 96 h (c), 192 h (d), 288 h (e) and 384 h (f)
Fig.6  High-power optical morphologies of the T6-treated Al-5Zn-2Mg aluminum alloy surface after oxidation at 550 oC for 0 h (a), 48 h (b), 96 h (c), 192 h (d), 288 h (e) and 384 h (f)
Fig.7  Variation trend of surface height of the T6-treated Al-5Zn-2Mg aluminum alloy after high-temperature oxidation at 400 oC and 550 oC
Fig.8  SE morphologies of oxidation surface of the T6-treated Al-5Zn-2Mg aluminum alloy at 400 oC (a, c, e, g) and 550 oC (b, d, f, h) for 0 h (a, b), 48 h (c, d), 96 h (e, f) and 288 h (g, h)
Temperature / oCTime / hAlOMgZnFeMnSi
400094.780.561.572.490.320.290.00
4890.313.352.932.760.340.290.02
9689.644.153.332.300.280.250.06
28889.354.183.342.510.310.280.03
550094.060.721.682.420.760.280.08
4872.8513.899.722.280.670.480.10
9669.9815.1811.152.480.610.490.11
28870.2615.609.822.930.660.560.18
Table 1  EDS data of the T6-treated Al-5Zn-2Mg aluminum alloy at high temperature oxidation (mass fraction, %)
Fig.9  SE (a) and BSE (b) morphologies of oxidation surface of the T6-treated Al-5Zn-2Mg aluminum alloy after oxidation at 400 oC for 288 h, and EDS scanning distribution of elements Al (c), Fe (d), Mn (e), Si (f), Mg (g) and O (h)
Fig.10  SE (a) and BSE (b) morphologies of oxidation surface of the T6-treated Al-5Zn-2Mg aluminum alloy after oxidation at 550 oC for 288 h, and EDS scanning distribution of elements Al (c), Fe (d), Mn (e), Si (f), Mg (g) and O (h)
Fig.11  Cross-sectional morphologies (a, b) and EDS mapping of Al (c, d), Mg (e, f), O (g, h) elements of the T6-treated Al-5Zn-2Mg aluminum alloy after oxidation at 400 oC (a, c, e, g) and 550 oC (b, d, f, h)
[1] Almajid A A. High-temperature deformation of naturally aged 7010 aluminum alloy [J]. Metals, 2021, 11(4): 581
[2] Anyasodor G, Koroschetz C. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures [J]. J. Phys. Conf. Ser., 2017, 896: 012093
[3] Belkacem L, Abdelbaki N, Otegui J L, et al. Using a supperficially treated 2024 aluminum alloy drill pipe to delay failure during dynamic loading [J]. Eng. Fail. Anal., 2019, 104: 261
[4] Hirsch J. Aluminium in innovative light-weight car design [J]. Mater. Trans., 2011, 52(5): 818
[5] Kim K J. Light-weight design and fatigue characteristics of automotive knuckle by using finite element analysis [J]. J. Mech. Sci. Technol., 2021, 35(7): 2989
[6] Oñoro J. High-temperature mechanical properties of aluminium alloys reinforced with titanium diboride (TiB2) particles [J]. Rare Met., 2011, 30(2): 200
[7] Wang Z X, Ma C Y, Li M Y, et al. Mechanical properties of 7A04-T6 high strength structural aluminium alloy at elevated temperatures and after cooling down [J]. Thin-Walled Struct., 2022, 180: 109930
[8] Yang X, Zhang X F, Liu Y, et al. Environmental failure behavior analysis of 7085 high strength aluminum alloy under high temperature and high humidity [J]. Metals, 2022, 12(6): 968
[9] Shakesheff A J, Purdue G. Designing metal matrix composites to meet their target: particulate reinforced aluminium alloys for missile applications [J]. Mater. Sci. Technol., 1998, 14(9-10): 851
[10] Liu L W, Yang M M, Fan H J, et al. Numerical computation and analysis on the temperature field of antitank missile skin [J]. Infrared Technol., 2013, 35(7): 430
刘连伟, 杨淼淼, 樊宏杰 等. 反坦克导弹蒙皮温度场的数值计算与分析 [J]. 红外技术, 2013, 35(7): 430
[11] Ma X, Zhao Y F, Tian W J, et al. A novel Al matrix composite reinforced by Nano-AlNp network [J]. Sci. Rep., 2016, 6: 34919
[12] Bai X R, Xie H N, Zhang X, et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys [J]. Nat. Mater., 2024, 23(6): 747
[13] Cheng F J, Yao J F, Yang Z W, et al. Structure and composition of oxide film on 5083 alloy at brazing temperature [J]. Mater. Sci. Technol., 2015, 31(11): 1282
[14] Attafi S, Aklouche-Benouaguef S, Talaş Ş. Time dependent ambient oxidation of AA6061-T6 alloy at the temperature of 580 oC [J]. Prot. Met. Phys. Chem. Surf., 2021, 57(4): 786
[15] Kim K. Formation of fine clusters in high-temperature oxidation of molten aluminum [J]. Metall. Mater. Trans., 2014, 45A: 3650
[16] Tanner D A, Belochapkine S, Laffir F, et al. Kirkendall void formation during room-temperature air-oxidation of thin aluminium and aluminium-lithium alloy films [J]. Mater. High Temp., 2012, 29(3): 235
[17] Tenório J A S, Espinosa D C R. High-temperature oxidation of Al-Mg alloys [J]. Oxid. Met., 2000, 53(3-4): 361
[18] Pardo A, Merino M C, Arrabal R, et al. Effect of La surface coatings on oxidation behavior of aluminum alloy/SiCp composites [J]. Oxid. Met., 2007, 67(1-2): 67
[19] Krainikov A V. Effect of the structure and chemical inhomogeneity of rapidly solidified powders on the properties of aluminum alloys [J]. Powder Metall. Met. Ceram., 2010, 49(7-8): 397
[20] Zhao P H, Wu X L, Liu Y, et al. Microstructure, mechanical properties and corrosion behavior of commercial 7N01 alloys [J]. Trans. Nonferr. Met. Soc. China, 2022, 32(3): 778
[21] Yan P, Zhang Z Y, Zhou C X, et al. Enhancement of corrosion resistance of a high Zn-yttrium aluminum alloy [J]. J. Alloy. Compd., 2020, 817: 152744
[22] Lv H B. Oxidation of Cu-Al alloys [D]. Changchun: Jilin University, 2010
吕海波. 铜铝合金氧化过程探讨 [D]. 长春: 吉林大学, 2010
[23] Xie D B, Hong H, Duo S W, et al. Degradation of oxide on surface of Al-Mg alloy in combustion atmospheres [J]. Surf. Technol., 2020, 49(1): 79
谢冬柏, 洪 昊, 多树旺 等. 铝合金表面氧化层在燃烧气氛中的退化行为 [J]. 表面技术, 2020, 49(1): 79
[24] Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
[25] Zhang X, Luo Z A, Liu Z S, et al. Interfacial microstructure and mechanical properties of 7050 aluminum alloy clad plates [J]. Chin. J. Nonferrous Met., 2023, 33(11): 3558
张 新, 骆宗安, 刘照松 等. 7050铝合金复合板界面处微观组织和力学性能 [J]. 中国有色金属学报, 2023, 33(11): 3558
[26] Zhu Z F, Chen J F, Xu G F. Research on high temperature oxidation behavior of Al-25Cu-12Mg alloy [J]. Hot Work. Technol., 2014, 43(14): 56
祝贞凤, 陈举飞, 徐国富. Al-25Cu-12Mg合金的高温氧化行为研究 [J]. 热加工工艺, 2014, 43(14): 56
[27] Mu W Y. Studies on oxidation behavior and properties of surface oxide film of aluminum in high-temperature water vapor [D]. Xi'an: Xi'an University of Architecture and Technology, 2004
慕伟意. 铝在高温水蒸汽中氧化行为及表面氧化膜性能的研究 [D]. 西安: 西安建筑科技大学, 2004
[28] Pan N. Investigation on oxidation dynamic and process of magnesium-aluminium alloys [D]. Taiyuan: Taiyuan University of Technology, 2012
潘 娜.镁铝合金高温氧化动力学及氧化过程研究 [D]. 太原: 太原理工大学, 2012
[29] Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part I. Characterisation of constituent particles and overheating [J]. Mater. Sci. Eng., 2012, 534A: 234
[30] Wang T, Yin Z M, Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy [J]. Trans. Nonferr. Met. Soc., 2007, 17(2): 335
[31] Zhang K, Chen J Q, Ma P Z, et al. Effect of welding thermal cycle on microstructural evolution of Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2018, 717A: 85
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!