Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (9): 641-649    DOI: 10.11901/1005.3093.2024.462
ARTICLES Current Issue | Archive | Adv Search |
Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel
YANG Jingqing1,2, DONG Wenchao2,3(), LU Shanping2()
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel. Chinese Journal of Materials Research, 2025, 39(9): 641-649.

Download:  HTML  PDF(22695KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the variation of δ-ferrite content of weld seams on the resistance to hot cracking and corrosion in HNO3 solution of weld joints for a high SiN stainless steel was studied, while weld joints were made with five types of welding wires with different contents of δ-ferrite as filler so that to adjust the Cr and Ni equivalent for the weld seams. Which were then characterized by means of optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA) in terms of the influence of δ-ferrite on properties of the weld seams. The results demonstrated that the significant increase in the content of δ-ferrite could reduce the cracking sensitivity of the weld metal. However, if δ-ferrite rich in Cr to certain extent, the possibly existed galvanic effect between which and the austenitic matrix may lead to preferential corrosion of δ-ferrite. As the δ-ferrite content continued to increase, the corrosion rate of the weld seams accelerated. Notably, when the δ-ferrite content exceeded a critical threshold, the δ-ferrite began to form an interconnected network within the columnar dendrite. This morphological transformation resulted in a phenomenon of corrosive spreading, where the corrosion front propagated rapidly across the material. Consequently, the corrosion rate exhibited a slight increase during the latter stages of the process.

Key words:  metallic materials      high SiN stainless steel weld metal      crack resistance      nitric acid corrosion resistance      δ-ferrite     
Received:  22 November 2024     
ZTFLH:  TG422.3  
Fund: Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0410203)
Corresponding Authors:  DONG Wenchao, Tel: (024)23971429, E-mail: wcdong@imr.ac.cn;
LU Shanping, Tel: (024)23971429, E-mail: shplu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.462     OR     https://www.cjmr.org/EN/Y2025/V39/I9/641

No.CCrNiMoMnSiNNbFe
1δ0.0119.415.80.0214.20.10.02Bal.
2δ19.415.80.020.54.20.10.02
7δ20.016.00.71.54.00.080.1
8δ20.016.00.31.54.00.0350.1
10δ20.016.00.31.54.50.060.02
Table 1  Chemical composition of welding wire (mass fraction, %)
Fig.1  Schematic diagram of groove form and size of weld deposit metal (units: mm)
No.CCrNiMoMnSiNNbFeδ content
0.003319.3415.60.0311.014.120.1000.007Bal.1.3
0.002319.3315.60.0260.564.120.1000.0071.7
0.008219.9516.00.671.414.020.0740.107.1
0.004419.8016.10.301.503.950.0360.0848.2
10δ0.007819.6815.50.311.464.270.0510.0059.7
Table 2  Chemical composition of deposited metal with different δ-ferrite contents (mass fraction, %)
Fig.2  FISCO experimental device
Fig.3  Steel plate and weld seam dimensions (a) and weld seam crack length calculation (b)[15]
Fig.4  Schematic diagram of sampling location and size of corrosion samples
Fig.5  Photos of the welded plate surface after FISCO test (a) 1δ, (b) 7δ
Fig.6  Macroscopic appearance of weld seam cross-section (a1-a4) 1δ, (b1-b4) 7δ
No.Crack length / mmWeld seam length / mmCrack rate / %
1δ12517272.7
2δ6817838.2
7δ4617426.4
Table 3  Crack length, weld length, and crack rate of weld metal after FISCO test
Fig.7  Microstructure of deposited metals with varying δ- ferrite contents (a) 7δ, (b) 8δ, (c) 10δ
Fig.8  Corrosion rate of different deposited metals (a) and variation of corrosion rate with time (b)
Fig.9  Surface corrosion morphology of weld metal with different δ-ferrite contents after 10 d (a1-c1) and 30 d (a2-c2) (a1, a2) 7δ, (b1, b2) 8δ, (c1, c2) 10δ
Fig.10  Microscopic morphology of corroded pits at high magnification (a) 7δ, (b) 8δ, (c) 10δ
Fig.11  Transverse section morphology of corroded sample (a) 8δ, (b) 10δ
No.PhaseComposition / %
CrNiFeSiMnMoN
7δFCC19.1216.9057.723.911.520.690.07
BCC23.6211.1358.454.541.040.990.04
8δFCC19.5516.6258.463.481.570.200.04
BCC24.7410.6158.504.391.060.440.02
10δFCC19.2416.6358.074.241.500.260.05
BCC24.1510.5458.924.930.990.440.03
Table 4  Proportion and chemical composition of ferrite and austenite in deposited metals with different δ-ferrite contents
Fig.12  Metallographic photographs of longitudinal sections of 8δ (a1-a3) and 10δ (b1-b3) specimens after corrosion for 10 d (a1, b1), 20 d (a2, b2), and 30 d (a3, b3)
[1] Fauvet P. 19 - Corrosion issues in nuclear fuel reprocessing plants [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Oxford: Woodhead Publishing, 2012
[2] Raj B, Mudali U K. Materials development and corrosion problems in nuclear fuel reprocessing plants [J]. Prog. Nucl. Energ., 2006, 48(4): 283
[3] Wang W, Luo M, Zhang Q F. Corrosion resistance of silicon-containing austenitic stainless steel in boiling nitric acid containing Ru n + [J]. Iron Steel Res., 2009, 21(8): 41
王 玮, 罗 明, 张启富. 硅对含强氧化性离子沸腾硝酸中奥氏体不锈钢耐蚀性的影响 [J]. 钢铁研究学报, 2009, 21(8): 41
[4] Rovere C A D, Silva R, Hammer P, et al. Corrosion behavior of Fe-Mn-Si-Cr-Ni-Co shape memory stainless steel in highly oxidizing medium [J]. Mater. Sci. Forum, 2016, 869: 669
[5] Laurent B, Gruet N, Gwinner B, et al. Dissolution and passivation of a silicon-rich austenitic stainless steel during active-passive cycles in sulfuric and nitric acid [J]. J. Electrochem. Soc., 2017, 164(13): C892
[6] Robin R, Miserque F, Spagnol V. Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid [J]. J. Nucl. Mater., 2008, 375(1): 65
[7] Féron D. 2 - Overview of nuclear materials and nuclear corrosion science and engineering [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Oxford: Woodhead Publishing, 2012
[8] Balbaud-Célérier F, Gruet N, Gwinner B, et al. 8 - Corrosion behavior of stainless steels in nitric acid in the context of nuclear fuel reprocessing plants [A]. Ritter S. Nuclear Corrosion [M]. Duxford: Woodhead Publishing, 2020
[9] Qi J J, Huang B Y, Wang Z H, et al. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel [J]. J. Mater. Sci. Technol., 2017, 33(12): 1621
doi: 10.1016/j.jmst.2017.09.016
[10] Ningshen S, Mudali U K, Amarendra G, et al. Corrosion assessment of nitric acid grade austenitic stainless steels [J]. Corros. Sci., 2009, 51(2): 322
[11] Liu J, Xu T, Wang C F, et al. Influence of crystall structure on corrosion resistance of 316 stainless steel by first-principles calculation [J]. Mater. Res. Appl., 2024, 18(5): 721
柳 剑, 许 涛, 王翠凤 等. 晶体结构对316不锈钢腐蚀影响的第一性原理研究 [J]. 材料研究与应用, 2024, 18(5): 721
[12] Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques [J]. Corros. Sci., 2011, 53(11): 3733
[13] Antony P J, Raman R K S, Mohanram R, et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2008, 50(7): 1858
[14] Fauvet P, Balbaud F, Robin R, et al. Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants [J]. J. Nucl. Mater., 2008, 375(1): 52
[15] Li Y J, Wang J. Welding Property Testing and Analysis Methods [M]. Beijing: Chemical Industry Press, 2014
李亚江, 王 娟. 焊接性试验与分析方法 [M]. 北京: 化学工业出版社, 2014
[16] Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36(1): 16
[17] Steele D F. Corrosion control in nuclear fuel reprocessing [J]. Ind. Lubr. Tribol., 1986, 38(5): 164
[18] Schmuki P, Virtanen S, Isaacs H S, et al. Electrochemical behavior of Cr2O3/Fe2O3 artificial passive films studied by in situ XANES [J]. J. Electrochem. Soc., 1998, 145(3): 791
[19] Takeuchi M, Takeda S, Nagai T, et al. Effect of chemical species in spent nuclear fuel reprocessing solution on corrosion of austenitic stainless steel [J]. Trans. Atom. Energ. Soc. Jpn., 2005, 4(1): 32
[20] Zhang Y Y, Zhang Z B. Study on preferential dissolution of duplex weldments of stainless steels [J]. Corros. Sci. Prot. Technol., 1993, 5(4): 238
张余英, 张振邦. 不锈钢双相焊缝选择性腐蚀研究 [J]. 腐蚀科学与防护技术, 1993, 5(4): 238
[21] Maurice V, Yang W P, Marcus P. X‐Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe‐18Cr‐13Ni single‐crystal surfaces [J]. J. Electrochem. Soc., 1998, 145(3): 909
[1] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[2] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[3] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[4] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[5] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[6] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[7] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[8] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[9] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[10] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[11] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[12] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[13] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[14] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[15] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
No Suggested Reading articles found!