Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (9): 683-693    DOI: 10.11901/1005.3093.2024.444
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2
XIE Fangxia1,2(), WU Guangqing1, ZHANG Shiwen3, LU Zeyi1, MU Yanming1,2, HE Xueming1,2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China
3.Wuxi Xizuan Geological Drilling Equipment Co., Ltd., Wuxi 214413, China
Cite this article: 

XIE Fangxia, WU Guangqing, ZHANG Shiwen, LU Zeyi, MU Yanming, HE Xueming. Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2. Chinese Journal of Materials Research, 2025, 39(9): 683-693.

Download:  HTML  PDF(18471KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-alloy 7075 based composites 7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%, mass fraction) were prepared by hot pressing sintering. The effect of TiB2 particle content and the post solution treatment temperatures on the microstructure and mechanical properties of the composites were studied. The results show that by hot press sintering at 600 oC, the density of 7075-6%TiB2 composites can reach 98.17%; TiB2 particles could effectively inhibit the growth of α-Al, and the average grain size of 7075-6%TiB2 composite was significantly refined, decreasing from 57.53 μm to 38.12 μm; TiB2 particles are mainly located at the grain boundaries, which hinder the diffusion of solute atoms, slow down their diffusion rate, and inhibit the growth of η(MgZn2) and S(Al2CuMg) phases at the grain boundaries; Correspondingly, the mechanical properties of the hot-press sintered 7075-6%TiB2 composite reached the peak, and the yield strength and tensile strength were (205 ± 5) MPa and (338 ± 6) MPa, respectively, due to the joint action of fine crystal strengthening and dispersion strengthening. With the increase of solution temperature within the range 460-520 oC, the yield strength and tensile strength of hot-pressed 7075-6%TiB2 composites first increase and then decrease. When the solution temperature is 500 oC, more small strengthening phases (η, S) are precipitated inside the composite matrix, and the dispersion strengthening effect is significant. Compared with the as hot-pressed 7075-6%TiB2 composite, the yield strength and tensile strength are increased by 39.5% and 25.4%. It should be also mentioned that the composite 7075-6%TiB2 being subjected to solution treated at 500 oC showed better mechanical properties than those of 7075 Al-alloy.

Key words:  composite      7075-6%TiB2      hot pressing sintering      mechanical properties      solution temperature     
Received:  01 November 2024     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(51501073);National Natural Science Foundation of China(51975251);National Natural Science Foundation of China(52205056);China Postdoctoral Science Foundation(2023M731424)
Corresponding Authors:  XIE Fangxia, Tel: (0510)85910562, E-mail: xiefangxia@jiangnan.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.444     OR     https://www.cjmr.org/EN/Y2025/V39/I9/683

Fig.1  Density curves of 7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%) composites in different hot pressing sintering temperatures
Fig.2  XRD patterns of hot-pressed 7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%) composites (a) and local magnification images of box selection parts of 1 (b) and 2 (c)
Fig.3  SEM images of hot pressed 7075-xTiB2 composites (a) x = 0%, (b) x = 3%, (c) x = 6%, (d) x = 9%, (e) x = 12%, (f) x = 15%
Fig.4  Histograms of grain size distribution in hot pressed 7075-xTiB2 composites (a) x = 0%, (b) x = 3%, (c) x = 6%, (d) x = 9%, (e) x = 12%, (f) x = 15%
Fig.5  SEM (a, b) and Al (c), Ti (d), Mg (e), Cu (f), Zn (g), B (h) element distribution of hot-pressed 7075-6%TiB2 composites and EDS analysis of point A in Fig.5b (i)
Fig.6  Tensile stress-strain curves (a) and mechanical properties (b) of hot-pressed 7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%) composites
Fig.7  Fracture morphologies of hot-pressed 7075-xTiB2 composites (a) x = 0%, (b) x = 3%, (c) x = 6%, (d) x = 9%, (e) x = 12%, (f) x = 15%
Fig.8  XRD patterns of 7075-6%TiB2 composite at different solution temperatures (a) and local magnification of box selection parts of 1 (b) and 2 (c)
Fig.9  SEM images of 7075-6%TiB2 composite at solution temperature of 460 oC (a, b), 480 oC (d, e), 500 oC (g, h), 520 oC (j, k) and EDS analysis of points B (c), C (f), D (i), E (l)
Fig.10  Tensile stress-strain curves (a) and mechanical properties (b) of 7075-6%TiB2 composite at different solution temperatures
Fig.11  Fracture morphologies of 7075-6%TiB2 composite at different solution temperatures (a) 460 oC, (b) 480 oC, (c) 500 oC, (d) 520 oC
[1] Liang J, Sun J H, Li X M, et al. Development and application of aluminum alloy drill rod in geologic drilling [J]. Procedia Eng., 2014, 73: 84
[2] Wen K, Liu H W. Fatigue crack growth and precipitation characteristics of a high Zn-containing Al-Zn-Mg-Cu alloy with various typical aging states [J]. Mater. Sci. Forum, 2021, 1026: 19
[3] Bishop D P, Caley W F, Kipouros G J, et al. Powder metallurgy processing of 2xxx and 7xxx series aluminium alloys [J]. Can. Metall. Quart., 2011, 50(3): 246
[4] Gupta M K. Mechanical behaviors of Al 6063/TiB2 composites fabricated by stir casting process [J]. Mater. Today: Proc., 2023, 82: 222
[5] Chen F, Wang T M, Chen Z N, et al. Microstructure, mechanical properties and wear behaviour of Zn-Al-Cu-TiB2 in situ composites [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(1): 103
[6] Dikici B, Gavgali M, Bedir F. Synthesis of in situ TiC nanoparticles in liquid aluminum: the effect of sintering temperature [J]. J. Compos. Mater., 2011, 45(8): 895
[7] Chen J, Yu W W, Zuo Z Y, et al. Effects of in-situ TiB2 particles on machinability and surface integrity in milling of TiB2/2024 and TiB2/7075 Al composites [J]. Chin. J. Aeronaut., 2021, 34(6): 110
[8] Zhao S L, Zhang H M, Cui Z S, et al. Strength and ductility improvement of an in-situ TiB2/Al-Zn-Mg-Cu composite by elliptical cross-section torsion extrusion [J]. Composites, 2021, 216B: 108843
[9] Mohapatra S, Chaubey K A, Mishra K D, et al. Fabrication of Al-TiC composites by hot consolidation technique: its microstructure and mechanical properties [J]. J. Mater. Res. Technol., 2016, 5(2): 117
[10] Liu Z S, Luo Z A, Zhang X, et al. Study on microstructure and mechanical properties of (TiC+B4C)/6061Al composites prepared by vacuum hot-press sintering method [J]. J. Manuf. Process., 2024, 131: 670
[11] Chen L, Zhang X L, Zheng W, et al. Investigation on corrosion behaviors and mechanical properties of TiB2/7075Al composites with various particle contents [J]. J. Mater. Res. Technol., 2023, 23: 2911
[12] Lu C, Zhang A, Yang Z, et al. Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites [J]. Iron Steel Vanadium Tiianium, 2022, 43(3): 47
卢 超, 张 傲, 杨 智 等. 放电等离子烧结温度对TiB2/Al复合材料结构与性能的影响 [J]. 钢铁钒钛, 2022, 43(3): 47
[13] Liu W C, Deng C, Hu L X, et al. Preparation of Al-Si alloy semi-solid billets by liquid phase reaction sintering [J]. Powder Metall. Technol., 2022, 40(5): 465
刘文超, 邓 澄, 胡连喜 等. 液相反应烧结制备Al-Si合金半固态坯料 [J]. 粉末冶金技术, 2022, 40(5): 465
doi: 10.19591/j.cnki.cn11-1974/tf.2022040011
[14] Yuan X J, Qu X H, Yin H Q, et al. Effects of sintering temperature on densification, microstructure and mechanical properties of Al-based alloy by high-velocity compaction [J]. Metals, 2021, 11(2): 218
[15] Latief F H, Sherif E S M. Effects of sintering temperature and graphite addition on the mechanical properties of aluminum [J]. J. Ind. Eng. Chem., 2012, 18(6): 2129
[16] Sweet G A, Hexemer R L, Donaldson I W, et al. Powder metallurgical processing of a 2xxx series aluminum powder metallurgy metal alloy reinforced with AlN particulate additions [J]. Mater. Sci. Eng., 2019, 755A: 10
[17] Chen Y, Jian Z Y, Ren Y M, et al. Influence of TiB2 volume fraction on SiCp/AlSi10Mg composites by LPBF: Microstructure, mechanical, and physical properties [J]. J. Mater. Res. Technol., 2023, 23: 3697
[18] Geng J W, Hong T R, Ma Y, et al. The solution treatment of in-situ sub-micron TiB2/2024 Al composite [J]. Mater. Des., 2016, 98: 186
[19] Ren H S, Liu Y B, Sun Q, et al. Promoting strengthening and grain refinement of aluminum alloy during wire and arc additive manufacturing by adding TiB2 particles [J]. Mater. Sci. Eng., 2023, 888A: 145805
[20] Li N, Wang T, Zhang L, et al. Microstructure evolution and mechanical properties strengthening in laser powder bed fusion of high-strength SiC and TiB2 co-reinforced Al-Zn-Mg-Cu composites [J]. J. Alloy. Compd., 2023, 965: 171463
[21] Que B H, Chen L, Chen Y J, et al. Fabrication of Al/Al-TiB2 laminate composites via hot press sintering process: An insight into the mechanical properties and fracture behavior[J]. J. Manuf. Process., 2024, 109: 53
[22] Xie D H, Pan R, Zhu S Z, et al. Effect of reinforced particle size on the microstructure and tensile properties of B4C/Al-Zn-Mg-Cu composites [J]. Chin. J. Mater. Res., 2023, 37(10): 731
谢东航, 潘 冉, 朱士泽 等. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731
doi: 10.11901/1005.3093.2022.574
[23] Sahoo B P, Das D, Chaubey A K. Strengthening mechanisms and modelling of mechanical properties of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites [J]. Mater. Sci. Eng., 2021, 825A: 141873
[24] Bian P B, Han X Z, Zhang J F, et al. Effect of aluminum powder size and temperature on mechanical properties of hot pressed 15%SiC/2009Al composite [J]. Chin. J. Mater. Res., 2024, 38(6): 401
doi: 10.11901/1005.3093.2023.125
边鹏博, 韩修柱, 张峻凡 等. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响 [J]. 材料研究学报, 2024, 38(6): 401
doi: 10.11901/1005.3093.2023.125
[25] Wu Y H, Li L W, Kang H J, et al. Agglomerating behavior of in-situ TiB2 particles and strength-ductility synergetic improvement of in-situ TiB2p/7075Al composites through ultrasound vibration [J]. Mater. Charact., 2024, 208: 113652
[26] Agrawal A P, Srivastava S K. Investigations of fatigue crack growth rate behaviour and life prediction of Si3N4/TiB2 reinforced hybrid metal matrix composites [J]. Int. J. Fatigue, 2024, 186: 108373
[27] Yan J X, Xie Y X, Ou B X, et al. Process optimization and tribological behavior of Ti-48Al-2Cr-2Nb prepared by selective electron beam melting [J]. Eng. Fail. Anal., 2024, 165: 108837
[28] Li H, Zhu C, Gu X T, et al. Understanding the strength increment of Al-Zn-Mg-Cu aluminum alloys by enhanced solution-treatment (EST) [J]. Mater. Sci. Eng., 2024, 903A: 146677
[29] Zhao Z Y, Xu H C, Liu H L, et al. Grain size control method for enhancing high-temperature durability of Al-Cu-Mg-Ag alloy [J]. J. Mater. Res. Technol., 2024, 30: 9425
[30] Hao S, Guo X P, Cui J Y, et al. Study on the solid solution temperature of achieving ultra-high strength in wire-arc additive manufactured Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Charact., 2023, 201: 112975
[31] Li N, Wang T, Zhang L, et al. Effects of solution treatment on microstructure and mechanical properties of (SiC+TiB2)/Al-Zn-Mg-Cu composite fabricated by laser powder bed fusion [J]. J. Ind. Eng. Chem., 2023, 26: 3466
[1] LIU Jinling, ZHANG Yan, QI Dongming, YU Yihao. Preparation and Performance of Flame-retardant Electromagnetic Shielding Composite Films of Sandwich Structure[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] WANG Binglin, CHAI Yifeng, TAN Shengxia, GUO Shengwei, JIANG Ru, ZHU Zhonghua, ZHANG Yutao, HUANG Guifang, HUANG Weiqing. Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction[J]. 材料研究学报, 2025, 39(9): 712-720.
[3] ZHANG Ruoyun, WANG Wei, GONG Penghui, DING Shijie, LIU Xianhao, SUN Zhuang, LV Fanfan, GAO Yuan, WANG Kuaishe. High-temperature Tribological Performance of Organic-inorganic Hybrid Modified Phosphate/Graphite Lubricating Coatings[J]. 材料研究学报, 2025, 39(9): 661-672.
[4] YANG Zhiru, HOU Wentao, ZHOU Hai, YANG Zi, HE Hao, JIN Chao. Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors[J]. 材料研究学报, 2025, 39(8): 569-582.
[5] LIU Endian, BAI Yu, LI Jiawen, HAO Hai. Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement[J]. 材料研究学报, 2025, 39(7): 481-488.
[6] SUN Shimao, LIU Hongchang, LIU Hongwei, WANG Jun, SHANG Chenkai. Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials[J]. 材料研究学报, 2025, 39(7): 499-509.
[7] CHEN Yuming, ZHU Xiaoyong, TAN Xiaoyue, LIU Jiaqin, WU Yucheng. Mechanical Properties of W-Y2O3 Composites as Candidate of the First Wall Material Faced Plasma[J]. 材料研究学报, 2025, 39(7): 510-520.
[8] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[9] MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. 材料研究学报, 2025, 39(6): 413-424.
[10] YANG Yanyan, LIU Yan, YANG Song, WANG Zitong, ZHU Feng, YU Zhongliang, HAO Xiaogang. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. 材料研究学报, 2025, 39(6): 425-434.
[11] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[12] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[13] LIU Yanyun, WANG Na, ZHANG Zhihua, BAI Wen, LIU Yunjie, CHEN Yongqiang, LI Wanxi, LI Yu. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. 材料研究学报, 2025, 39(5): 371-376.
[14] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[15] ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether[J]. 材料研究学报, 2025, 39(4): 251-258.
No Suggested Reading articles found!