Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (4): 296-304    DOI: 10.11901/1005.3093.2024.327
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface
LI Qingpeng1,2(), LIU Jiaxing1, AN Xiaoyun1, LI Yongzhi3, GAO Meng4, SUN Hongtao4, WANG Na1,2
1.Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Shenyang Key Laboratory for New Functional Coating Materials, Shenyang 110142, China
3.Shenyang Hangda Technology Co. Ltd., Shenyang 110043, China
4.Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
Cite this article: 

LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface. Chinese Journal of Materials Research, 2025, 39(4): 296-304.

Download:  HTML  PDF(14738KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the corrosion resistance of galvanized fasteners, it is necessary to develop a silane conversion film with good storage stability and high corrosion resistance. Herein, a high performance composite silane conversion film was prepared on electroplated Zn surface with amino-silane KH550 and epoxy-silane KH560 as raw materials. The effect of ratios the two silanes on the storage stability of the conversion liquid and the corrosion resistance of the conversion film were studied. The prepared composite silane conversion liquid and composite silane conversion film were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), infrared spectroscopy (IR), neutral salt spray test, polarization curve test, long-term storage test, binding force test and pencil hardness test, in terms of the relevant storage stability, surface morphology, composition, mechanical properties and corrosion etc. The results show that when the ratio of KH550 to KH560 is 5∶5, the composite silane conversion film has the best performance, its storage stability reaches 180 d. After 72 h of neutral salt spray test, no white rust was produced in the coating. The corrosion current density and polarization resistance of the composite conversion film reach 4.229 × 10-9 A·cm-2 and 5.443 × 105 Ω·cm2, respectively. It provides theoretical and application support for the further development of corrosion prevention of galvanized fasteners.

Key words:  surface and interface in the materials      composite conversion film      stability      corrosion resistance      galvanize     
Received:  29 July 2024     
ZTFLH:  TG174.4  
Fund: Fundamental Research Program for Applications from Liaoning Provincial Department of Science and Technology(2023JH2/101300229);Sino-Spain Joint Laboratory on Material Science(2022JH2/10700005)
Corresponding Authors:  LI Qingpeng, Tel: (024)83988092, E-mail: qpli001@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.327     OR     https://www.cjmr.org/EN/Y2025/V39/I4/296

KH550∶KH560State
0∶10T
1∶9F
2∶8F
3∶7F
4∶6F
5∶5T
6∶4T
7∶3T
8∶2T
9∶1T
10∶0T
Table 1  Stability of conversion solution with different silane proportions stored at room temperature for 180 d
Fig.1  Conversion solution with different silane proportions was stored at room temperature for 180 d
Fig.2  Infrared absorption spectra of conversion solution with different silane proportions
SamplepHTime 1 / sTime 2 / sTime 3 / sTime 4 / sAverage time / s
Pure-11121.3
0∶10834243.2
5∶58343300320318320.3
6∶48270295268280278.3
7∶38138160172166159.0
8∶287564958980.5
9∶186673728072.8
10∶081310879.5
Table 2  Titration time of film-forming copper sulfate at different silane ratios
Fig.3  Results of 72 h test of coating with different silane ratio under 5% (mass fraction) NaCl neutral salt spray
Fig.4  Galvanized fasteners (a) and silane ratio 5∶5 (b) surface SEM morphology
Fig.5  SEM morphology (a, b) and EDS delamination images (c~h) of transformed films with a silane ratio of 5∶5
Fig.6  Infrared absorption spectra of silane conversion films
Fig.7  Adhesion test results of disilane conversion film
Fig.8  Tafel polarization curve of a galvanized sheet with a ratio of 5∶5 silane conversion film
Sampleφcorr / Vjcorr / A·cm-2Rp / Ω·cm2
Galvanized sheet-1.0956.014 × 10-78.419 × 103
5∶5-1.0514.229 × 10-95.443 × 105
Table 3  Potentiodynamic polarization curve fitting data of galvanized sheet and silane ratio 5∶5 conversion film
Fig.9  Protective mechanism diagram of composite silane conversion film
1 Harsimran S, Santosh K, Rakesh K. Overview of corrosion and its control: a critical review [J]. Proc. Eng., 2021, 3(1): 13
2 Hou B, Li X, Ma X, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 4: 1
3 Li Q P, Jiang T C, Yan L, et al. Preparation of modified aluminum powder coated with SiO2 and its effect on properties of water-based aluminum rich coatings [J]. Electroplat. Finish., 2023, 42(2): 60
李庆鹏, 蒋天成, 阎 磊 等. SiO2包覆改性铝粉的制备及对水性富铝涂料性能的影响 [J]. 电镀与涂饰, 2023, 42(2): 60
4 Yu F X. Research of preparation and protective performance of Zn-Al alloy coating by low pressure cold spray technology [D]. Qingdao: Qingdao University of Science & Technology, 2014
于福旭. 低压冷喷涂锌铝合金涂层制备及防护性能研究 [D]. 青岛: 青岛科技大学, 2014
5 Bala N, Singh H, Karthikeyan J, et al. Cold spray coating process for corrosion protection: a review [J]. Surf. Eng., 2014, 30(6): 414
6 Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of Al(Y)-30%Al2O3 coating fabricated by low pressure cold spray technology [J]. Acta Metall. Sin., 2019, 55(10): 1338
白 杨, 王振华, 李相波 等. 低压冷喷涂制备 Al(Y)-30%Al2O3涂层及其海水腐蚀行为 [J]. 金属学报, 2019, 55(10): 1338
7 Wu M J. Chromium and human health [J]. Trace Elem. Heal. Res., 2014, 31(4): 72
吴茂江. 铬与人体健康 [J]. 微量元素与健康研究, 2014, 31 (4): 72
8 Gao Z Q, Zhang D W, Li X G, et al. Current status, opportunities and challenges in chemical conversion coatings for zinc [J]. Colloids Surf. A Physicochem. Eng. Aspects., 2018, 546: 221
9 Wu X X, Kong G, Sun Z W, et al. Preparation and corrosion performance of lanthanum nitrate conversion coating on hot- dip galfansteel [J]. Chin. J. Mater. Res., 2016, 30(4): 269
吴晓晓, 孔 纲, 孙子文 等. 热浸镀Galfan表面镧盐转化膜的生长和耐腐蚀性能的研究 [J]. 材料研究学报, 2016, 30(4): 269
doi: 10.11901/1005.3093.2015.435
10 Huang X L, Huang C Z, Ding Y H, et al. Environmental protection chromium free passivation process for new energy power battery cases [J]. Electroplat. Finish., 2022, 41(21): 1531
黄兴林, 黄朝志, 丁运虎 等. 新能源动力电池壳环保无铬钝化工艺 [J]. 电镀与涂饰, 2022, 41(21): 1531
11 Golabadi M, Aliofkhazraei M, Toorani M, et al. Corrosion and cathodic disbondment resistance of epoxy coating on zinc phosphate conversioncoatingcontainingNi2+and Co2+ [J].J. Ind. and Eng. Chem., and Eng. Chem., 2016, 47: 154
12 Zhang S H, Kong G, Sun Z W, et al. Effect of formulation of silica- based solution on corrosion resistance of silicate coating on hot-dip galvanized steel [J]. Surf. Interface Anal., 2016, 48(3): 132
13 Ramanauskas R, Girčienė O, Gudavičiūtė L, et al. The interaction of phosphate coatings on a carbon steel surface with a sodium nitrite and silicate solution [J]. Appl. Surf. Sci., 2015, 327: 131
14 Cui G, Bi Z X, Zhang R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings [J]. Chem. Eng. J., 2019, 373: 104
doi: 10.1016/j.cej.2019.05.034
15 Tian Y Q, Wang W H, Zhong L, et al. Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061 [J]. Prog. Org. Coat., 2022, 163: 106655
16 Xu Q Y, Wang H X, Jiang R. Formation and corrosion resistance of titanium containing conversion film on hot-dip galvanized steel [J]. Chin. J. Mater. Res., 2014, 28(7): 521
doi: 10.11901/1005.3093.2014.123
许乔瑜, 王海霞, 姜 瑞. 热浸镀锌层钛盐转化膜的制备和耐蚀性能 [J]. 材料研究学报, 2014, 28(7): 521
doi: 10.11901/1005.3093.2014.123
17 Ooij W, Zhu D. Electrochemical impedance spectroscopy of bis-(triethoxysilypropyl) tetrasulfide on Al 2024-T3 substrates [J]. Corrosion: J. Sci. Engin., 2001, 57(5): 413
18 Zhu Yuqiao. Study on green passivation and Corrosion resistance of galvanized sheet [D]. Zhenjiang: Jiangsu University of Science and Technology, 2010
朱玉巧. 镀锌板绿色钝化及其耐蚀性能研究 [D]. 镇江: 江苏科技大学, 2010
19 Yun T H, Park J H, Kim J, et al. Effect of the surface modification of zinc powders with organosilanes on the corrosion resistance of a zinc pigmented organic coating [J]. Prog. Org. Coat., 2014, 77 (11): 1780
20 Behgam R, Mahdavian M, Ramazani A, Fabrication of hollow carbon spheres doped with zinc cations to enhance corrosion protection of organosilane coatings [J]. Surf. Interfaces., 2020, 21: 1
21 Calderon J C, Koch L, Bandl C, et al. Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools[J]. Surf. Coat. Technol., 2020, 399: 1
22 Zhu D Q, Ooij J W. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl]amine [J]. Electrochim. Acta, 2004, 49(07): 1113
23 Yang T, Chen W G, Li X, et al. Environment-friendly and chromium-free passivation of copper and its alloys [J]. Mater. Today. Commun., 2021, 29: 1
24 Koltsov A, Cornu M J. Loison D. Characterization by different analytical techniques of SiO2 and silane thin films deposited on rough hot-dip galvanized steel surfaces [J]. Surf. Coat. Technol., 2012, 206: 2759
25 Wang H, Li S Y. Galvanized steel surface preparation and properties of the silane film study [J]. J. Sur. Technol., 2016, 45(10): 168
王 华, 李淑英. 镀锌钢板表面硅烷膜的制备及性能研究 [J]. 表面技术, 2016, 45(10): 168
26 Zhang Z H, Ye P F, Xu L P, et al. Composite passivation film of inorganic components and organosilane on hot galvanized sheet Surface [J]. Surf. Technol., 2013, 42(2): 14
张振海, 叶鹏飞, 徐丽萍 等. 热镀锌板表面无机组分与有机硅烷复合钝化膜 [J]. 表面技术, 2013, 42(2): 14
27 Egli W, Disarli A R, Seré P R, et al. Preparation and characterization of silanes films to protect electrogalvanized steel [J]. J. Mater. Eng. Perform. 2018, 27(3): 1194.
28 Ma Q G. Preparation and film forming performance of silane treatment agent for galvanized sheet surface [D]. Beijing: General Institute of Mechanical Science Research, 2017
马启国. 镀锌板表面硅烷处理剂的制备及其成膜性能研究 [D]. 北京: 机械科学研究总院, 2017
29 Mu J J, Li L J, Yao H R, et al. Preparation of PUF/PANI-CO double-wall microcapsules and anti-corrosion properties of modified water-based epoxy coating [J]. Fine Chem., 2024, 1
穆建立, 李丽娟, 姚红蕊 等. PUF/PANI-CO双壁微胶囊的制备及改性水性环氧涂层的防腐性能 [J]. 精细化工, 2024, 1
30 Peng C. Study on Environmental protection silane composite passivation film of galvanized sheet and its corrosion resistance [D]. Harbin: Harbin Engineering University, 2022
彭 闯. 镀锌板环保型硅烷复合钝化膜研制及其耐蚀性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2022
31 Chen C, Feng J, Zhang X Y, et al. Modification of amphiphilic Janus particles with cobalt Phthalocyanine for photocatalytic degradation of dyes at emulsion interface [J]. Fine Chem. Indust., 2023, 40(11): 2403
陈 晨, 冯 军, 张馨予 等. 钴酞菁修饰两亲性Janus颗粒用于乳液界面光催化染料降解 [J]. 精细化工, 2023, 40(11): 2403
32 Liu L R, Zhou Y T, Li Q P, et al. Effects of surface modification and heat treatment on the storage and application properties of waterborne zinc-based paint [J]. Coatings, 2023, 13(3): 652
33 Liu Y, Su X L, Luo F, et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3 SiC2 /epoxy resin coating [J]. J. Mater. Sci. Mater. Electron., 2018, 29(3): 2500
34 Liu Z P, Ma C, Zhang J, et al. High mechanical strength superhydrophobic colored sand prepared by a low-temperature strategy [J]. J. Mater. Sci. Technol., 2024, 194: 203
doi: 10.1016/j.jmst.2024.01.038
35 Li Q P, Liu L R, Zhang L, et al. Preparation and properties of water-based zinc coating [J]. Mater. Rev., 2023, 37(11): 245
李庆鹏, 刘利冉, 张 亮 等. 水性锌基涂镀涂层的制备及性能研究 [J]. 材料导报, 2023, 37(11): 245
36 Kong G, Zhang S H, Sun Z W, et al. Effect of particle size of silica powder on preparation of silicate conversion film [J]. Chin. J. Mater. Res., 2014, 28(6): 462
孔 纲, 张双红, 孙子文 等. 二氧化硅粉体粒度对硅酸盐转化膜制备的影响 [J]. 材料研究学报, 2014, 28(6): 462
37 Akhtar S, Matin A, Kumar A M, et al. Enhancement of anticorrosion property of 304 stainless steel using silane coatings [J]. Appl. Surf. Sci. 2018, 440(1): 1286
[1] PENG Yihe, OU Baoli, PENG Yongjie, WEN Mieyi, CHENG Tianyu, CHEN Diming. Preparation and Properties of Cerium Dioxide-Graphene Oxide Hybrid Materials (CeO2-GO)/Epoxy Resin Anti-corrosive Composite Coating[J]. 材料研究学报, 2025, 39(4): 259-271.
[2] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[3] WANG Jing, HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai. Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites[J]. 材料研究学报, 2025, 39(3): 185-197.
[4] ZHU Guohao, CHEN Ping, XU Jilei, SUN Huimin. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide[J]. 材料研究学报, 2025, 39(2): 103-112.
[5] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[6] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
[7] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[8] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[9] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[10] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[11] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[12] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[13] WANG Huiming, WANG Jinlong, LI Yingju, ZHANG Hongyi, LV Xiaoren. Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings[J]. 材料研究学报, 2024, 38(12): 941-949.
[14] CHEN Jihong, WANG Yongli, XIONG Liangyin, SONG Lixin. Preparation of Low Activity Fe-Al Coating on 316L Steel Surface[J]. 材料研究学报, 2024, 38(11): 801-810.
[15] LI Yufeng, FENG Feng, LIU Shibo, LIU Lishuang, GAO Xiaohui. Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin[J]. 材料研究学报, 2024, 38(11): 861-871.
No Suggested Reading articles found!