Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 881-888    DOI: 10.11901/1005.3093.2022.661
ARTICLES Current Issue | Archive | Adv Search |
Effect of Medium Heat Treatment on Quenched Micro-structure and Tensile Properties of Ti65 Alloy
TAN Haibing1,2, ZANG Jian1,2, LIANG Bining1,2, LIU Jianrong1(), WANG Qingjiang1(), ZHAO Zibo1, LI Wenyuan1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

TAN Haibing, ZANG Jian, LIANG Bining, LIU Jianrong, WANG Qingjiang, ZHAO Zibo, LI Wenyuan. Effect of Medium Heat Treatment on Quenched Micro-structure and Tensile Properties of Ti65 Alloy. Chinese Journal of Materials Research, 2023, 37(12): 881-888.

Download:  HTML  PDF(5707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Heat treatments in the temperature range of 800~950℃for 10~60 min was applied to water-quenched Ti65 alloy, in order to investigate the martensite decomposition and its effect on tensile properties at room temperature. The results show that detectable martensite decomposition is already found at 800℃ with a holding time of only 10 min. The martensite decomposition occurs through the diffusion of β-stabilizing elements from the interior of α' plate to the interface to form β phase. The morphology of the β phase changes from irregular to regular rods of varied aspect ratio with prolonged holding time. Increasing temperature leads to apparent coarsening of the decomposition products. Both room-temperature tensile and yield strengths decrease after the heat treatments. Nearly constant strength was found for the heat treatments in the range from 800℃/40 min across 850℃ 20 min/40 min/60 min to 900℃/20 min. The decrease of strength is attributed mainly to the weakened solution strengthening induced by the decomposition of martensite phase. After the completion of the decomposition of the martensite phase, the strength remains almost constant due to the balance between the weakening induced by the coarsening of α plate and the strengthening by the dispersed α2 particles.

Key words:  metallic materials      Ti65 alloy      medium-temperature heat treatment      martensite decomposition      tensile property     
Received:  12 December 2022     
ZTFLH:  TG132.32  
Fund: National Science and Technology Major Project(J2019-VI-0012-0126)
Corresponding Authors:  WANG Qingjiang, Tel: (024)83978830, E-mail: qjwang@imr.ac.cn;
LIU Jianrong, Tel: (024)23971942, E-mail: jrliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.661     OR     https://www.cjmr.org/EN/Y2023/V37/I12/881

Fig.1  Microstructure of Ti65 alloy treated at (a) as-received; (b) 1030℃/2 h, WQ; (b)1030℃/2 h, WQ+800℃/10 min, WQ; (d) 1030℃/2 h, WQ+800℃/20 min, WQ; (e) 1030℃/2 h, WQ+800℃/60 min, WQ; (f) 1030℃/2 h, WQ+850℃/10 min, WQ; (g) 1030℃/2 h, WQ+850℃/40 min, WQ; (h) 1030℃/2 h, WQ+900℃/20 min, WQ; (i) 1030℃/2 h, WQ+950℃/20 min, WQ
Solution treatmentMedium temperature treatments
1030℃/2 h, WQAs-quenched
800℃/10, 20, 40, 60 min, WQ
850℃/10, 20, 40, 60 min, WQ
900℃/10, 20, 40, 60 min, WQ
950℃/10, 20, 40, 60 min, WQ
Table 1  Heat treatment scheme of Ti65 alloy for microstructure observation
Solution treatmentMedium temperature treatmentsAging treatment
1030℃/2 h, WQAs-quenched700℃/5 h, AC
800℃/10, 20, 40, 60 min, WQ
850℃/10, 20, 40, 60 min,WQ
900℃/20, 40, 60 min, WQ
950℃/20, 40, 60 min, WQ
Table 2  Heat treatment scheme of Ti65 alloy for tensile test
Fig.2  Thickness of α plate in Ti65 alloy treated at medium temperature treatments
Fig.3  XRD patterns of Ti65 alloy treated at 800℃ for different times (a) main phase compositions; (b) changes of the (110) plane of β phase
Fig.4  Room temperature tensile property of Ti65 alloy with different medium-temperature heat treat-ments listed in Table 2 (a) tensile strength; (b) elongation
Fig.5  Schematic of β phase evolution during α' martensite decomposing
Fig.6  TEM microstructure of α2 phase in Ti65 alloy heat-treated at (a) 1030℃/2 h, WQ+700℃/5 h, AC; (b) 1030℃/2 h, WQ+800℃/20 min, WQ; (c) 1030℃/2 h, WQ+800℃/20 min, WQ+700℃/5 h, AC; (d) 1030℃/2 h, WQ+850℃/20 min, WQ; (e) 1030℃/2 h, WQ+900℃/20 min, WQ; (f) super lattice diffraction spots from α2 phase precipitated in α phase in Fig.7b. Black indices belong to α, and red those belong to α2 phase
Fig.7  Relationship between the size of α plate and room-temperature tensile strength of Ti65 alloy
1 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
2 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: John Wiley & Sons, 2003: 259
3 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61(3): 844
doi: 10.1016/j.actamat.2012.10.043
4 Fanning J C. Properties of TIMETAL 555 (Ti-5Al-5Mo-5V-3Cr-0.6Fe) [J]. J. Mater. Eng. Perform., 2005, 14(6): 788
doi: 10.1361/105994905X75628
5 Campo K N, Andrade D R, Opini V C, et al. On the hardenability of Nb-modified metastable beta Ti-5553 alloy [J]. J. Alloys Compd., 2016, 667: 211
doi: 10.1016/j.jallcom.2016.01.142
6 Matsumoto H, Watanabe S, Hanada S. α' Martensite Ti-V-Sn alloys with low Young's modulus and high strength [J]. Mater. Sci. Eng., 2007, 448A(1-2) : 39
7 Qazi J I, Rahim J, Fores F H, et al. Phase transformations in Ti-6Al-4V-xH alloys [J]. Metall. Mater. Trans., 2001, 32A(10) : 2453
8 Qazi J I, Senkov O N, Rahim J, et al. Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys [J]. Mater. Sci. Eng., 2003, 359A(1-2) : 137
9 Wang H, Chao Q, Chen H, et al. Formation of a transition V-rich structure during the α' to α+β phase transformation process in additively manufactured Ti-6Al-4V [J]. Acta Mater., 2022, 235: 118104
doi: 10.1016/j.actamat.2022.118104
10 Barriobero-Vila P, Biancardi Oliveira V, Schwarz S, et al. Tracking the αʺ martensite decomposition during continuous heating of a Ti-6Al-6V-2Sn alloy [J]. Acta Mater., 2017, 135: 132
doi: 10.1016/j.actamat.2017.06.018
11 Zhang T J. Investigation of electron microscopy on the phase transformation of titanium alloy (III): martensitic transformation [J]. Rare Met. Mater. Eng., 1989, (4): 71
张廷杰. 钛合金相变的电子显微镜研究(III)-钛合金中的马氏体相变 [J]. 稀有金属材料与工程, 1989, (4): 71
12 Chang H, Zhou L, Zhang T J. Review of solid phase transformation in titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36(9): 1505
常 辉, 周 廉, 张廷杰. 钛合金固态相变的研究进展 [J]. 稀有金属材料与工程, 2007, 36(9): 1505
13 Davis R, Flower H M, West D R F. The decomposition of Ti-Mo alloy martensites by nucleation and growth and spinodal mechanisms [J]. Acta Metall., 1979, 27(6): 1041
doi: 10.1016/0001-6160(79)90192-5
14 Mantani Y, Tajima M. Phase transformation of quenched αʺ martensite by aging in Ti-Nb alloys [J]. Mater. Sci. Eng., 2006, 438-440A: 315
15 Gil Mur F X, Rodríguez D, Planell J A. Influence of tempering temperature and time on the α'-Ti-6Al-4V martensite [J]. J. Alloys Compd., 1996, 234(2): 287
doi: 10.1016/0925-8388(95)02057-8
16 Sun F, Li J S, Kou H C, et al. Effect of α' martensite on microstructure refinement after α+β isothermal treatment in a near-α titanium alloy Ti60 [J]. J. Mater. Eng. Perform., 2015, 24(5): 1945
doi: 10.1007/s11665-015-1486-1
17 Wang J Y, Ge Z M, Zhou Y B. Aviation Titanium Alloy [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1985: 137
王金友, 葛志明, 周彦邦. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1985: 137
18 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012: 115
赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012: 115
19 Motyka M, Baran-Sadleja A, Sieniawski J, et al. Decomposition of deformed α'(α″) martensitic phase in Ti-6Al-4V alloy [J]. Mater. Sci. Technol., 2019, 35(3): 260
doi: 10.1080/02670836.2018.1466418
20 Cao S, Chu R K, Zhou X G, et al. Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V [J]. J. Alloys Compd., 2018, 744: 357
doi: 10.1016/j.jallcom.2018.02.111
21 Zhou Y L, Niinomi M, Akahori T. Decomposition of martensite α″ during aging treatments and resulting mechanical properties of Ti-Ta alloys [J]. Mater. Sci. Eng., 2004, 384A(1-2) : 92
22 Sato K, Matsumoto H, Kodaira K, et al. Phase transformation and age-hardening of hexagonal α' martensite in Ti-12mass%V-2mass%Al alloys studied by transmission electron microscopy [J]. J. Alloys Compd., 2010, 506(2): 607
doi: 10.1016/j.jallcom.2010.07.127
23 Lütjering G, Williams J C. Titanium [M]. New York: Springer, 2007: 165
24 Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36: 91
doi: 10.1016/j.jmst.2019.03.018
25 Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys [J]. Mater. Sci. Eng., 1998, 243A(1) : 206
26 Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23(1): 1
赵 亮, 刘建荣, 王清江 等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23(1): 1
27 Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy [J]. Acta Mater., 2017, 129: 72
doi: 10.1016/j.actamat.2017.02.068
28 Radecka A, Bagot P A J, Martin T L, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V [J]. Acta Mater., 2016, 112: 141
doi: 10.1016/j.actamat.2016.03.080
29 Zhang J, Li D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-α titanium alloys [J]. Mater. Sci. Eng., 2003, 341A(1-2) : 229
30 Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49(17): 3565
doi: 10.1016/S1359-6454(01)00236-1
31 Liu J R, Li S X, Li D, et al. Effect of aging on fatigue-crack growth behavior of a high-temperature titanium alloy [J]. Mater. Trans., 2004, 45(5): 1577
doi: 10.2320/matertrans.45.1577
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!