Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 889-899    DOI: 10.11901/1005.3093.2022.600
ARTICLES Current Issue | Archive | Adv Search |
Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413
ZHANG Yingjian1, ZHANG Siqian1(), WANG Dong2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Yingjian, ZHANG Siqian, WANG Dong, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413. Chinese Journal of Materials Research, 2023, 37(12): 889-899.

Download:  HTML  PDF(18854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A nickel base single crystal superalloy DD413 was coated with platinum modified aluminide (Pt-Al) coating via successively Pt electrodepositing and vapor phase aluminizing, then the degradation behavior of the Pt-Al coating/ DD413 alloy after long-term thermal exposure in air at 850℃ and 1000℃is studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that with the extension of thermal exposure time, MC carbide and σ-TCP phase dissolve to varying degrees in the interdiffusion of zone (IDZ), accompanied by M23C6 carbide precipitation on the interface. At the same time, the size of the secondary reaction of zone (SRZ) and σ-TCP phase increases continuously. In the substrate beneath the coating, cubic γ' precipitates are spheroidized and connected with each other in a raft shape. The higher thermal exposure temperature, the more obvious the above microstructure degradation process. It can be seen from the comparative analysis that the microstructure degradation after long-term thermal exposure is closely related to the diffusion of elements at high temperatures.

Key words:  metallic materials      Nickel base single crystal superalloy      Pt-Al Coating      Long-term thermal exposure      Interface microstructure degradation     
Received:  14 November 2022     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(52071219)
Corresponding Authors:  ZHANG Siqian, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.600     OR     https://www.cjmr.org/EN/Y2023/V37/I12/889

AlloyCCrCoWMoAlTiTaNi
DD4130.071293.81.93.64.15Bal.
Table 1  Nominal composition of DD413 alloy (mass fraction, %)
Fig.1  Diagram of cross section of coating/substrate
Fig.2  XRD diffraction pattern of original Pt-Al coating
Fig.3  (a) Cross section morphology of original Pt-Al coating/Alloy and (b) EDS energy spectrum corresponding to red box in (a)
Fig.4  BSE images and EDS spectrum of Pt-Al coating/alloy section after etched: (a) sectional image of Pt-Al coating; (b, c) enlarged image of coating/substrate interface image of γ/γ'; (d, e) are the corresponding MC and σ-TCP EDS spectra in (a)
Fig.5  TEM image and selected area diffraction pattern (SAD) of Pt-Al coating/alloy (a) TEM image of interdiffusion region of original coating; (A) and (B) selected area diffraction (SAD) corresponding to (a)
Fig.6  BSE images of Pt-Al coating/alloy section after long-term thermal exposure at 850℃ for different time (a) 50 h; (b)600 h; (c) 1800 h; (d) 3600 h
Fig.7  TEM image and selected area diffraction patterns (SAD) of block precipitated in IDZ after heat exposure at 850℃ for 3600 h
Fig.8  BSE images of Pt Al coating/alloy section etched after thermal exposure at 850℃ for different time (a) 50 h; (b) 600 h; (c) 1800 h; (d) 3600 h
Fig.9  (a) TEM image after thermal exposure at 850℃ for 3600 h and selected area diffraction pattern (SAD), (b) EDS energy spectrum corresponding to needle phase in (a)
Fig.10  BSE images of Pt-Al coating/alloy section after long-term thermal exposure at 1000℃ for different time (a) 50 h; (b)600 h; (c)1800 h; (d) 3600 h
Fig.11  Evolution trend of thickness of IDZ (a) and SRZ (b) after 850℃ and 1000℃ thermal exposure
Fig.12  Evolution trend of MC carbide in IDZ after thermal exposure at 850℃ and 1000℃ (a) Average size of MC carbide; (b) Volume fraction of MC carbide
Fig.13  XRD pattern of Pt-Al / DD413 system after long-term thermal exposure (a) 850℃/0-3600 h; (b) 1000℃/0-3600 h
Fig.14  BSE images of Pt-Al coating/alloy section after long-term thermal exposure at 1000℃ for different time (a) 50 h; (b)600 h; (c) 1800 h; (d) 3600 h
Fig.15  (a) 1000℃/3600 h, TEM image and selected area diffraction pattern (SAD) and (b) EDS energy spectrum corresponding to needle phase in (a)
1 Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
doi: 10.1016/j.actamat.2012.05.023
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta. Metall. Sin., 2019, 55(09): 1077
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(09): 1077
3 Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects [J]. Int. Mater. Rev., 2019, 64(6): 355
doi: 10.1080/09506608.2018.1516713
4 Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
5 Yan G, Yu W, Shengping S. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction [J]. Corros Sci., 2020, 173: 108760
doi: 10.1016/j.corsci.2020.108760
6 Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J Mater Sci., 1999, 34(16): 3957
doi: 10.1023/A:1004643311001
7 Liu H, Xu M M, Li S, et al. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating [J]. J Mater Sci Technol., 2020, 54: 132
doi: 10.1016/j.jmst.2020.05.007
8 Latief F H, Kakehi K. Influence of thermal exposure on the creep properties of an aluminized Ni-based single crystal superalloy in different surface orientations [J]. Mater. Des., 2014, 56: 816
doi: 10.1016/j.matdes.2013.11.075
9 Qin X Z, Guo J T, Yuan C, et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy [J]. Mater. Sci. Eng. A., 2012, 543: 121
doi: 10.1016/j.msea.2012.02.059
10 Yang L, Chen M, Wang J, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J Mater Sci Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
11 Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Creep behavior of Pt-aluminide (PtAl) coated directionally solidified Ni-based superalloy CM-247LC after thermal exposure [J]. Mater. Sci. Eng. A., 2015, 641: 84
doi: 10.1016/j.msea.2015.06.011
12 Zhang J C, Liu L, Huang T W, et al. Coarsening kinetics of γ' precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J Mater Sci Technol., 2021, 62(03): 1
doi: 10.1016/j.jmst.2020.05.034
13 Moshtaghin R S, Asgari S. Growth kinetics of γ' precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
14 Chen X, Yao Z, Dong J, et al. The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure [J]. J. Alloys Compd., 2018, 735: 928
doi: 10.1016/j.jallcom.2017.11.166
15 Tan Z, Yang L, Wang X, et al. Evolution of TCP phase during long term thermal exposure in several Re-Containing single crystal superalloys [J]. Acta. Metall. Sin. (English Letters), 2020, 33(5): 731
16 Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ' and TCP phases in single crystal Ni-base superalloy [J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
17 Yuan K, Eriksson R, Lin P R, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation [J]. Surf. Coat. Technol., 2013, 232: 204
doi: 10.1016/j.surfcoat.2013.05.008
18 Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature [J]. Corros Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
19 Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050℃ [J]. Surf. Coat. Technol., 2004, 176(3): 272
doi: 10.1016/S0257-8972(03)00767-9
20 Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202(8): 1385
doi: 10.1016/j.surfcoat.2007.06.041
21 Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng. A., 2012, 536: 14
doi: 10.1016/j.msea.2011.10.016
22 Li S, Qi H, Yang X. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment [J]. Rare Metals, 2018, 37(3): 204
doi: 10.1007/s12598-017-0931-8
23 Han L, Zheng S, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int J Fatigue., 2021, 153: 106500
doi: 10.1016/j.ijfatigue.2021.106500
24 Han L, Li P, Yu S, et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism [J]. Int J Fatigue., 2022, 154: 106558
doi: 10.1016/j.ijfatigue.2021.106558
25 Shi L, Xin L, Wang X, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloys Compd., 2015, 649: 515
doi: 10.1016/j.jallcom.2015.07.095
26 Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204(21): 3641
doi: 10.1016/j.surfcoat.2010.04.041
27 Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
28 Aghaie-Khafri M, Farahany S. Creep life prediction of thermally exposed rene 80 superalloy [J]. J. Mater. Eng. Perform., 2010, 19(7): 1065
doi: 10.1007/s11665-009-9584-6
29 Yin B, Xie G, Lou L, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
30 Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [J]. Superalloys, 1996: 9
31 Chen M, Shen M, Zhu S, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000℃ [J]. Corros Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
32 Li J, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193:108776
doi: 10.1016/j.matdes.2020.108776
33 Liu Y, Zou M, Su H, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
34 Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng. A., 2003, 361(1): 191
doi: 10.1016/S0921-5093(03)00517-3
35 Xiang X, Yao Z, Dong J, et al. Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging [J]. J. Alloys Compd., 2019, 787: 216
doi: 10.1016/j.jallcom.2019.01.389
36 Zhan X, Wang D, Ge Z, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
doi: 10.1016/j.surfcoat.2022.128487
37 Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56(16): 4277
doi: 10.1016/j.actamat.2008.04.061
38 Suzuki A, Rae C M F. Secondary reaction zone formations in coated Ni-base single crystal superalloys [J]. J Phys Conf Ser., 2009, 165: 12002
doi: 10.1088/1742-6596/165/1/012002
39 Pollock T M, Argon A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Metall. Mater., 1994, 42(6): 1859
doi: 10.1016/0956-7151(94)90011-6
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!