|
|
Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413 |
ZHANG Yingjian1, ZHANG Siqian1( ), WANG Dong2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1 |
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHANG Yingjian, ZHANG Siqian, WANG Dong, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413. Chinese Journal of Materials Research, 2023, 37(12): 889-899.
|
Abstract A nickel base single crystal superalloy DD413 was coated with platinum modified aluminide (Pt-Al) coating via successively Pt electrodepositing and vapor phase aluminizing, then the degradation behavior of the Pt-Al coating/ DD413 alloy after long-term thermal exposure in air at 850℃ and 1000℃is studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that with the extension of thermal exposure time, MC carbide and σ-TCP phase dissolve to varying degrees in the interdiffusion of zone (IDZ), accompanied by M23C6 carbide precipitation on the interface. At the same time, the size of the secondary reaction of zone (SRZ) and σ-TCP phase increases continuously. In the substrate beneath the coating, cubic γ' precipitates are spheroidized and connected with each other in a raft shape. The higher thermal exposure temperature, the more obvious the above microstructure degradation process. It can be seen from the comparative analysis that the microstructure degradation after long-term thermal exposure is closely related to the diffusion of elements at high temperatures.
|
Received: 14 November 2022
|
|
Fund: National Natural Science Foundation of China(52071219) |
Corresponding Authors:
ZHANG Siqian, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn
|
1 |
Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
doi: 10.1016/j.actamat.2012.05.023
|
2 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta. Metall. Sin., 2019, 55(09): 1077
|
|
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(09): 1077
|
3 |
Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects [J]. Int. Mater. Rev., 2019, 64(6): 355
doi: 10.1080/09506608.2018.1516713
|
4 |
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
|
5 |
Yan G, Yu W, Shengping S. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction [J]. Corros Sci., 2020, 173: 108760
doi: 10.1016/j.corsci.2020.108760
|
6 |
Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J Mater Sci., 1999, 34(16): 3957
doi: 10.1023/A:1004643311001
|
7 |
Liu H, Xu M M, Li S, et al. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating [J]. J Mater Sci Technol., 2020, 54: 132
doi: 10.1016/j.jmst.2020.05.007
|
8 |
Latief F H, Kakehi K. Influence of thermal exposure on the creep properties of an aluminized Ni-based single crystal superalloy in different surface orientations [J]. Mater. Des., 2014, 56: 816
doi: 10.1016/j.matdes.2013.11.075
|
9 |
Qin X Z, Guo J T, Yuan C, et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy [J]. Mater. Sci. Eng. A., 2012, 543: 121
doi: 10.1016/j.msea.2012.02.059
|
10 |
Yang L, Chen M, Wang J, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J Mater Sci Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
|
11 |
Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Creep behavior of Pt-aluminide (PtAl) coated directionally solidified Ni-based superalloy CM-247LC after thermal exposure [J]. Mater. Sci. Eng. A., 2015, 641: 84
doi: 10.1016/j.msea.2015.06.011
|
12 |
Zhang J C, Liu L, Huang T W, et al. Coarsening kinetics of γ' precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J Mater Sci Technol., 2021, 62(03): 1
doi: 10.1016/j.jmst.2020.05.034
|
13 |
Moshtaghin R S, Asgari S. Growth kinetics of γ' precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
|
14 |
Chen X, Yao Z, Dong J, et al. The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure [J]. J. Alloys Compd., 2018, 735: 928
doi: 10.1016/j.jallcom.2017.11.166
|
15 |
Tan Z, Yang L, Wang X, et al. Evolution of TCP phase during long term thermal exposure in several Re-Containing single crystal superalloys [J]. Acta. Metall. Sin. (English Letters), 2020, 33(5): 731
|
16 |
Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ' and TCP phases in single crystal Ni-base superalloy [J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
|
17 |
Yuan K, Eriksson R, Lin P R, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation [J]. Surf. Coat. Technol., 2013, 232: 204
doi: 10.1016/j.surfcoat.2013.05.008
|
18 |
Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature [J]. Corros Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
|
19 |
Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050℃ [J]. Surf. Coat. Technol., 2004, 176(3): 272
doi: 10.1016/S0257-8972(03)00767-9
|
20 |
Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202(8): 1385
doi: 10.1016/j.surfcoat.2007.06.041
|
21 |
Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng. A., 2012, 536: 14
doi: 10.1016/j.msea.2011.10.016
|
22 |
Li S, Qi H, Yang X. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment [J]. Rare Metals, 2018, 37(3): 204
doi: 10.1007/s12598-017-0931-8
|
23 |
Han L, Zheng S, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int J Fatigue., 2021, 153: 106500
doi: 10.1016/j.ijfatigue.2021.106500
|
24 |
Han L, Li P, Yu S, et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism [J]. Int J Fatigue., 2022, 154: 106558
doi: 10.1016/j.ijfatigue.2021.106558
|
25 |
Shi L, Xin L, Wang X, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloys Compd., 2015, 649: 515
doi: 10.1016/j.jallcom.2015.07.095
|
26 |
Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204(21): 3641
doi: 10.1016/j.surfcoat.2010.04.041
|
27 |
Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
|
28 |
Aghaie-Khafri M, Farahany S. Creep life prediction of thermally exposed rene 80 superalloy [J]. J. Mater. Eng. Perform., 2010, 19(7): 1065
doi: 10.1007/s11665-009-9584-6
|
29 |
Yin B, Xie G, Lou L, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
|
30 |
Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [J]. Superalloys, 1996: 9
|
31 |
Chen M, Shen M, Zhu S, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000℃ [J]. Corros Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
|
32 |
Li J, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193:108776
doi: 10.1016/j.matdes.2020.108776
|
33 |
Liu Y, Zou M, Su H, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
|
34 |
Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng. A., 2003, 361(1): 191
doi: 10.1016/S0921-5093(03)00517-3
|
35 |
Xiang X, Yao Z, Dong J, et al. Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging [J]. J. Alloys Compd., 2019, 787: 216
doi: 10.1016/j.jallcom.2019.01.389
|
36 |
Zhan X, Wang D, Ge Z, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
doi: 10.1016/j.surfcoat.2022.128487
|
37 |
Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56(16): 4277
doi: 10.1016/j.actamat.2008.04.061
|
38 |
Suzuki A, Rae C M F. Secondary reaction zone formations in coated Ni-base single crystal superalloys [J]. J Phys Conf Ser., 2009, 165: 12002
doi: 10.1088/1742-6596/165/1/012002
|
39 |
Pollock T M, Argon A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Metall. Mater., 1994, 42(6): 1859
doi: 10.1016/0956-7151(94)90011-6
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|