|
|
Formation and Electrochemical Properties of Nanoporous Fe-Si-B-P by Dealloying |
LAI Xiangye, WENG Nan, CHI Yuchen, QIN Fengxiang( ) |
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
|
Cite this article:
LAI Xiangye, WENG Nan, CHI Yuchen, QIN Fengxiang. Formation and Electrochemical Properties of Nanoporous Fe-Si-B-P by Dealloying. Chinese Journal of Materials Research, 2023, 37(11): 801-808.
|
Abstract Fe76Si9B10P5 amorphous alloys annealed at 773~833 K with heterogeneous microstructure consisting of α-Fe, Fe2B and Fe3P phases, were de-alloyed in 0.05 mol/L H2SO4 solution. The porous structure was formed due to the preferential dissolution of α-Fe phase in the form of micro-coupling cells between α-Fe phase and cathodic residual phases. The size of nanopores increased from 150 nm to 260 nm with the temperature increasing from 773 K to 883 K. The nanoporous Fe-Si-B-P electrode showed much superior redox performance compared with Fe76Si9B10P5 amorphous alloy, which was ascribed to its large specific area and more electrochemical active sites.
|
Received: 14 November 2022
|
|
Fund: National Natural Science Foundation of China(52371157);National Natural Science Foundation of China(51671106) |
Corresponding Authors:
QIN Fengxiang, Tel: (025)84315606, E-mail: fengxiangqin@njust.edu.cn
|
1 |
Liu N, Zhai Z H, Yu B, et al. Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction [J]. Int. J. Hydrog. Energy, 2022, 47(73): 31330
doi: 10.1016/j.ijhydene.2022.07.067
|
2 |
Tang W G, Zhu S L, Jiang H, et al. Self-supporting nanoporous CoMoP electrocatalyst for hydrogen evolution reaction in alkaline solution [J]. J. Colloid Interface Sci., 2022, 625: 606
doi: 10.1016/j.jcis.2022.06.085
|
3 |
Yong Y L, Zhang W J, Hou Q H, et al. Highly sensitive and selective gas sensors based on nanoporous CN monolayer for reusable detection of NO, H2S and NH3: A first-principles study [J]. Appl. Surf. Sci., 2022, 606: 154806
doi: 10.1016/j.apsusc.2022.154806
|
4 |
Zheng X H, Qiao X F, Luo F Y, et al. Low-cost high-performance NO2 sensor based on nanoporous indium tin oxide (ITO) film [J]. Sens. Actuators., 2021, 346B: 130440
|
5 |
Yao L J, Li Y X, Ran Y, et al. Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas [J]. J. Alloys Compd., 2020, 826: 154063
doi: 10.1016/j.jallcom.2020.154063
|
6 |
Mohajer F, Ziarani G M, Badiei A, et al. Functionalized silica nanoporous Pd complex for reduction of nitroarenes and dyes [J]. Inorg. Chem. Commun., 2022, 144: 109936
doi: 10.1016/j.inoche.2022.109936
|
7 |
Lahiri S K, Zhang C, Sillanpää M, et al. Nanoporous NiO@SiO2 photo-catalyst prepared by ion-exchange method for fast elimination of reactive dyes from wastewater [J]. Mater. Today Chem., 2022, 23: 100677
|
8 |
Ye Z D, Miao R, Miao F J, et al. 3D nanoporous core-shell ZnO@Co3O4 electrode materials for high-performance supercapacitors and nonenzymatic glucose sensors [J]. J. Electroanal. Chem., 2021, 903: 115766
doi: 10.1016/j.jelechem.2021.115766
|
9 |
Shen W N, Dunn B, Moore C D, et al. Synthesis of nanoporous bismuth films by liquid-phase deposition [J]. J. Mater. Chem., 2000, 10A(3) : 657
|
10 |
Luo H M, Sun L, Lu Y F, et al. Electrodeposition of mesoporous semimetal and magnetic metal films from lyotropic liquid crystalline phases [J]. Langmuir, 2004, 20(23): 10218
pmid: 15518516
|
11 |
Snyder J, Livi K, Erlebacher J. Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides [J]. J. Electrochem. Soc., 2008, 155(8): C464
doi: 10.1149/1.2940319
|
12 |
Dong H, Cao X D. Nanoporous gold thin film: fabrication, structure evolution, and electrocatalytic activity [J]. J. Phys. Chem., 2009, 113C(2) : 603
|
13 |
Wierzbicka E, Sulka G D. Nanoporous spongelike Au-Ag films for electrochemical epinephrine sensing [J]. J. Electroanal. Chem., 2016, 762: 43
doi: 10.1016/j.jelechem.2015.12.013
|
14 |
Hu L W, Liu X, Le G M, et al. Morphology evolution and SERS activity of the nanoporous Au prepared by dealloying sputtered Au-Ag film [J]. Physica, 2019, 558B: 49
|
15 |
Liu H T, He P, Li Z Y, et al. High surface area nanoporous platinum: facile fabrication and electrocatalytic activity [J]. Nanotechnology, 2006, 17(9): 2167
doi: 10.1088/0957-4484/17/9/015
|
16 |
Thorp J C, Sieradzki K, Tang L, et al. Crozier, A. Misra, M. Nastasi, D. Mitlin, S. T. Picraux. Formation of nanoporous noble metal thin films by electrochemical dealloying of Pt x Si1- x [J]. Appl. Phys. Lett., 2006, 88(3): 033110
|
17 |
Zhang X L, Li G J, Duan D, et al. Formation and control of nanoporous Pt ribbons by two-step dealloying for methanol electro-oxidation [J]. Corros. Sci., 2018, 135: 57
doi: 10.1016/j.corsci.2018.02.030
|
18 |
Viyannalage L T, Liu Y, Dimitrov N. Processing of nanoporous Ag layers by potential-controlled displacement (PCD) of Cu [J]. Langmuir, 2008, 24(15): 8332
doi: 10.1021/la800569t
pmid: 18613704
|
19 |
Yeh F H, Tai C C, Huang J F, et al. Sun. Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid [J]. J. Phys. Chem., 2006, 110B(11) : 5215
|
20 |
Yi Q F, Huang W, Liu X P, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation [J]. J. Electroanal. Chem., 2008, 619-620: 197
doi: 10.1016/j.jelechem.2008.03.012
|
21 |
Lu H B, Li Y, Wang F H. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying [J]. Scr. Mater., 2007, 56(2): 165
doi: 10.1016/j.scriptamat.2006.09.009
|
22 |
Chang J K, Hsu S H, Sun I W, et al. Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys [J]. J. Phys. Chem., 2008, 112C(5) : 1371
|
23 |
Fukumizu T, Kotani F, Yoshida A, et al. Electrochemical formation of porous nickel in zinc chloride-alkali chloride melts [J]. J. Electrochem. Soc., 2006, 153(9): C629
doi: 10.1149/1.2216401
|
24 |
Qi Z, Zhao C C, Wang X G, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys [J]. J. Phys. Chem., 2009, 113C(16) : 6694
|
25 |
Jia F L, Yu C F, Deng K J, et al. Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance [J]. J. Phys. Chem., 2007, 111C(24) : 8424
|
26 |
Dan Z H, Qin F X, Sugawara Y, et al. Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions [J]. Intermetallics, 2012, 29: 14
doi: 10.1016/j.intermet.2012.04.016
|
27 |
Xu C X, Liu Y Q, Wang J P, et al. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis [J]. ACS Appl. Mater. Interfaces, 2011, 3(12): 4626
doi: 10.1021/am201057t
|
28 |
Ou S L, Ma D G, Li Y H, et al. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy [J]. J. Alloys Compd., 2017, 706: 215
doi: 10.1016/j.jallcom.2017.02.203
|
29 |
Chen F, Zhou Y, Chen Y N, et al. Fabrication of nano-porous Co by dealloying for supercapacitor and azo-dye degradation [J]. Chin. J. Mater. Res., 2020, 34(12): 905
|
|
陈 峰, 周 洋, 陈彦南 等. 脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能 [J]. 材料研究学报, 2020, 34(12): 905
|
30 |
Ma D G, Wang Y M, Li Y H, et al. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36: 128
doi: 10.1016/j.jmst.2019.05.066
|
31 |
Chi Y C, Chen F, Wang H N, et al. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method [J]. J. Mater. Sci. Technol., 2021, 92: 40
doi: 10.1016/j.jmst.2021.03.041
|
32 |
Yu F, Zhou H Q, Zhu Z, et al. Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation [J]. ACS Catal., 2017, 7: 2052
doi: 10.1021/acscatal.6b03132
|
33 |
Li Y G, Dai H J. Recent advances in zinc-air batteries [J]. Chem. Soc. Rev., 2014, 43(15): 5257
doi: 10.1039/c4cs00015c
pmid: 24926965
|
34 |
Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
doi: 10.1002/adma.v28.46
|
35 |
Černý J, Micka K. Voltammetric study of an iron electrode in alkaline electrolytes [J]. J. Power Sources, 1989, 25(2): 111
doi: 10.1016/0378-7753(89)85003-7
|
36 |
Fu C Q, Xu L J, Dan Z H, et al. Annealing effect of amorphous Fe-Si-B-P-Cu precursors on microstructural evolution and Redox behavior of nanoporous counterparts [J]. J. Alloys Compd., 2017, 726: 810
doi: 10.1016/j.jallcom.2017.08.045
|
37 |
Dan Z H, Qin F X, Zhang Y, et al. Mechanism of active dissolution of nanocrystalline Fe-Si-B-P-Cu soft magnetic alloys [J]. Mater. Charact., 2016, 121: 9
doi: 10.1016/j.matchar.2016.08.012
|
38 |
Liu P S. Calculation method for the specific surface area of porous metals [J]. Chin. J. Mater. Res., 2009, 23(4): 415
|
|
刘培生. 多孔金属比表面积的计算方法 [J]. 材料研究学报, 2009, 23(4): 415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|