Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 801-808    DOI: 10.11901/1005.3093.2022.602
ARTICLES Current Issue | Archive | Adv Search |
Formation and Electrochemical Properties of Nanoporous Fe-Si-B-P by Dealloying
LAI Xiangye, WENG Nan, CHI Yuchen, QIN Fengxiang()
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article: 

LAI Xiangye, WENG Nan, CHI Yuchen, QIN Fengxiang. Formation and Electrochemical Properties of Nanoporous Fe-Si-B-P by Dealloying. Chinese Journal of Materials Research, 2023, 37(11): 801-808.

Download:  HTML  PDF(13582KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe76Si9B10P5 amorphous alloys annealed at 773~833 K with heterogeneous microstructure consisting of α-Fe, Fe2B and Fe3P phases, were de-alloyed in 0.05 mol/L H2SO4 solution. The porous structure was formed due to the preferential dissolution of α-Fe phase in the form of micro-coupling cells between α-Fe phase and cathodic residual phases. The size of nanopores increased from 150 nm to 260 nm with the temperature increasing from 773 K to 883 K. The nanoporous Fe-Si-B-P electrode showed much superior redox performance compared with Fe76Si9B10P5 amorphous alloy, which was ascribed to its large specific area and more electrochemical active sites.

Key words:  metallic materials      crystallization of amorphous alloys      dealloying      nanoporous structure      redox reaction     
Received:  14 November 2022     
ZTFLH:  TG403.40  
Fund: National Natural Science Foundation of China(52371157);National Natural Science Foundation of China(51671106)
Corresponding Authors:  QIN Fengxiang, Tel: (025)84315606, E-mail: fengxiangqin@njust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.602     OR     https://www.cjmr.org/EN/Y2023/V37/I11/801

Fig.1  DSC curve of Fe76Si9B10P5 amorphous alloy
Fig.2  XRD patterns of Fe76Si9B10P5 amorphous alloy and its crystallized counterparts after annealing at different temperatures
Fig.3  Bright field images and corresponding selective area diffraction patterns of Fe76Si9B10P5 amorphous alloy (a) and its crystallized counterpart after annealing at 773 K (b)
Fig.4  XRD patterns of Fe76Si9B10P5 alloy annealed at different temperatures after dealloying in 0.05 mol/L H2SO4 solution
Fig.5  OCPs with immersion time of the high-purity Fe plate, Fe85B15 alloy, Fe3P alloy, as-spun Fe76Si9B10P5 amorphous alloy and annealed Fe76Si9B10P5 alloy in 0.05 mol/L H2SO4 solution
Fig.6  SEM morphologies of dealloyed Fe76Si9B10P5 alloy annealed at 773 K (a), 793 K (b), 813 K (c) and 833 K (d) in 0.05 mol/L H2SO4. Inset is an image of cross section after dealloying
Fig.7  Aperture size of Fe76Si9B10P5 alloys annealed at different temperatures after dealloying in 0.05 mol/L H2SO4
Fig.8  SEM morphologies of Fe76Si9B10P5 alloys annealed at 773 K after dealloying in 0.005 mol/L (a), 0.01 mol/L (b), 0.05 mol/L (c) H2SO4 solutions for 600 s (a1~a3), 1800 s (b1~b3), 3600 s (c1~c3)
Fig.9  CV curves of Fe76Si9B10P5 amorphous alloy (a) and dealloyed Fe76Si9B10P5 alloy (b) in 6 mol/L KOH solution
Fig.10  CV curves of dealloyed Fe76Si9B10P5 alloy in 6 mol/L KOH solution (a) and the change of the peak current densities of oxidation and reduction (b) at different scanning rates
Fig.11  SEM morphology of dealloyed Fe76Si9B10P5 alloy after the measurement of cyclic voltammogram
Fig.12  Diagram of the mechanism of dealloying of annealed Fe-Si-B-P alloys
1 Liu N, Zhai Z H, Yu B, et al. Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction [J]. Int. J. Hydrog. Energy, 2022, 47(73): 31330
doi: 10.1016/j.ijhydene.2022.07.067
2 Tang W G, Zhu S L, Jiang H, et al. Self-supporting nanoporous CoMoP electrocatalyst for hydrogen evolution reaction in alkaline solution [J]. J. Colloid Interface Sci., 2022, 625: 606
doi: 10.1016/j.jcis.2022.06.085
3 Yong Y L, Zhang W J, Hou Q H, et al. Highly sensitive and selective gas sensors based on nanoporous CN monolayer for reusable detection of NO, H2S and NH3: A first-principles study [J]. Appl. Surf. Sci., 2022, 606: 154806
doi: 10.1016/j.apsusc.2022.154806
4 Zheng X H, Qiao X F, Luo F Y, et al. Low-cost high-performance NO2 sensor based on nanoporous indium tin oxide (ITO) film [J]. Sens. Actuators., 2021, 346B: 130440
5 Yao L J, Li Y X, Ran Y, et al. Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas [J]. J. Alloys Compd., 2020, 826: 154063
doi: 10.1016/j.jallcom.2020.154063
6 Mohajer F, Ziarani G M, Badiei A, et al. Functionalized silica nanoporous Pd complex for reduction of nitroarenes and dyes [J]. Inorg. Chem. Commun., 2022, 144: 109936
doi: 10.1016/j.inoche.2022.109936
7 Lahiri S K, Zhang C, Sillanpää M, et al. Nanoporous NiO@SiO2 photo-catalyst prepared by ion-exchange method for fast elimination of reactive dyes from wastewater [J]. Mater. Today Chem., 2022, 23: 100677
8 Ye Z D, Miao R, Miao F J, et al. 3D nanoporous core-shell ZnO@Co3O4 electrode materials for high-performance supercapacitors and nonenzymatic glucose sensors [J]. J. Electroanal. Chem., 2021, 903: 115766
doi: 10.1016/j.jelechem.2021.115766
9 Shen W N, Dunn B, Moore C D, et al. Synthesis of nanoporous bismuth films by liquid-phase deposition [J]. J. Mater. Chem., 2000, 10A(3) : 657
10 Luo H M, Sun L, Lu Y F, et al. Electrodeposition of mesoporous semimetal and magnetic metal films from lyotropic liquid crystalline phases [J]. Langmuir, 2004, 20(23): 10218
pmid: 15518516
11 Snyder J, Livi K, Erlebacher J. Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides [J]. J. Electrochem. Soc., 2008, 155(8): C464
doi: 10.1149/1.2940319
12 Dong H, Cao X D. Nanoporous gold thin film: fabrication, structure evolution, and electrocatalytic activity [J]. J. Phys. Chem., 2009, 113C(2) : 603
13 Wierzbicka E, Sulka G D. Nanoporous spongelike Au-Ag films for electrochemical epinephrine sensing [J]. J. Electroanal. Chem., 2016, 762: 43
doi: 10.1016/j.jelechem.2015.12.013
14 Hu L W, Liu X, Le G M, et al. Morphology evolution and SERS activity of the nanoporous Au prepared by dealloying sputtered Au-Ag film [J]. Physica, 2019, 558B: 49
15 Liu H T, He P, Li Z Y, et al. High surface area nanoporous platinum: facile fabrication and electrocatalytic activity [J]. Nanotechnology, 2006, 17(9): 2167
doi: 10.1088/0957-4484/17/9/015
16 Thorp J C, Sieradzki K, Tang L, et al. Crozier, A. Misra, M. Nastasi, D. Mitlin, S. T. Picraux. Formation of nanoporous noble metal thin films by electrochemical dealloying of Pt x Si1- x [J]. Appl. Phys. Lett., 2006, 88(3): 033110
17 Zhang X L, Li G J, Duan D, et al. Formation and control of nanoporous Pt ribbons by two-step dealloying for methanol electro-oxidation [J]. Corros. Sci., 2018, 135: 57
doi: 10.1016/j.corsci.2018.02.030
18 Viyannalage L T, Liu Y, Dimitrov N. Processing of nanoporous Ag layers by potential-controlled displacement (PCD) of Cu [J]. Langmuir, 2008, 24(15): 8332
doi: 10.1021/la800569t pmid: 18613704
19 Yeh F H, Tai C C, Huang J F, et al. Sun. Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid [J]. J. Phys. Chem., 2006, 110B(11) : 5215
20 Yi Q F, Huang W, Liu X P, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation [J]. J. Electroanal. Chem., 2008, 619-620: 197
doi: 10.1016/j.jelechem.2008.03.012
21 Lu H B, Li Y, Wang F H. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying [J]. Scr. Mater., 2007, 56(2): 165
doi: 10.1016/j.scriptamat.2006.09.009
22 Chang J K, Hsu S H, Sun I W, et al. Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys [J]. J. Phys. Chem., 2008, 112C(5) : 1371
23 Fukumizu T, Kotani F, Yoshida A, et al. Electrochemical formation of porous nickel in zinc chloride-alkali chloride melts [J]. J. Electrochem. Soc., 2006, 153(9): C629
doi: 10.1149/1.2216401
24 Qi Z, Zhao C C, Wang X G, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys [J]. J. Phys. Chem., 2009, 113C(16) : 6694
25 Jia F L, Yu C F, Deng K J, et al. Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance [J]. J. Phys. Chem., 2007, 111C(24) : 8424
26 Dan Z H, Qin F X, Sugawara Y, et al. Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions [J]. Intermetallics, 2012, 29: 14
doi: 10.1016/j.intermet.2012.04.016
27 Xu C X, Liu Y Q, Wang J P, et al. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis [J]. ACS Appl. Mater. Interfaces, 2011, 3(12): 4626
doi: 10.1021/am201057t
28 Ou S L, Ma D G, Li Y H, et al. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy [J]. J. Alloys Compd., 2017, 706: 215
doi: 10.1016/j.jallcom.2017.02.203
29 Chen F, Zhou Y, Chen Y N, et al. Fabrication of nano-porous Co by dealloying for supercapacitor and azo-dye degradation [J]. Chin. J. Mater. Res., 2020, 34(12): 905
陈 峰, 周 洋, 陈彦南 等. 脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能 [J]. 材料研究学报, 2020, 34(12): 905
30 Ma D G, Wang Y M, Li Y H, et al. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36: 128
doi: 10.1016/j.jmst.2019.05.066
31 Chi Y C, Chen F, Wang H N, et al. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method [J]. J. Mater. Sci. Technol., 2021, 92: 40
doi: 10.1016/j.jmst.2021.03.041
32 Yu F, Zhou H Q, Zhu Z, et al. Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation [J]. ACS Catal., 2017, 7: 2052
doi: 10.1021/acscatal.6b03132
33 Li Y G, Dai H J. Recent advances in zinc-air batteries [J]. Chem. Soc. Rev., 2014, 43(15): 5257
doi: 10.1039/c4cs00015c pmid: 24926965
34 Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
doi: 10.1002/adma.v28.46
35 Černý J, Micka K. Voltammetric study of an iron electrode in alkaline electrolytes [J]. J. Power Sources, 1989, 25(2): 111
doi: 10.1016/0378-7753(89)85003-7
36 Fu C Q, Xu L J, Dan Z H, et al. Annealing effect of amorphous Fe-Si-B-P-Cu precursors on microstructural evolution and Redox behavior of nanoporous counterparts [J]. J. Alloys Compd., 2017, 726: 810
doi: 10.1016/j.jallcom.2017.08.045
37 Dan Z H, Qin F X, Zhang Y, et al. Mechanism of active dissolution of nanocrystalline Fe-Si-B-P-Cu soft magnetic alloys [J]. Mater. Charact., 2016, 121: 9
doi: 10.1016/j.matchar.2016.08.012
38 Liu P S. Calculation method for the specific surface area of porous metals [J]. Chin. J. Mater. Res., 2009, 23(4): 415
刘培生. 多孔金属比表面积的计算方法 [J]. 材料研究学报, 2009, 23(4): 415
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!