Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 685-696    DOI: 10.11901/1005.3093.2022.341
ARTICLES Current Issue | Archive | Adv Search |
Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys
XING Dingqin1, TU Jian1,2,3(), LUO Sen1, ZHOU Zhiming1,2
1.College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3.Chongqing Materials Research Institute Co. Ltd., Chongqing 400707, China
Cite this article: 

XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys. Chinese Journal of Materials Research, 2023, 37(9): 685-696.

Download:  HTML  PDF(37357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

VCoNi medium entropy alloy (MEA) with severe lattice distortion has good strength and toughness. In this work, the MEAs (VCoNi)100-x C x (x=0, 0.1, 0.4, 1 and 2.8) were repaired by the following processes: the mixture of alloy powders was melted per vacuum non-consumable arc melting furnace; Then the as-cast alloy was subjected to thermal compression deformation (45% deformation) after being heated at 1000℃ for 2 h; further rolling deformation at room temperature (70% deformation); which was finally heated at 1000℃ for 1 min followed by water quenching to acquire the recrystallized alloys. Then the effect of different C additions on the microstructure, mechanical and wear properties of the MEAs was systematically studied via SEM with EDS and EBSD, universal tensile testing machine and pin/disc wear tester. The results show that when the C content is between 0 and 1, with the increase of C content, the grain size of both the homogenized and recrystallized EMAs decrease, while the amount of second phase particles increases. For the homogenized EMAs, textures converge gradually toward the ɑ-orientation; while for recrystallized EMAs, textures converge on the-orientation, where is the strongest point of the textures also situated. When the C content is between 1 and 2.8, coarse cellular grains emerge in the homogenized EMAs, while the second phases precipitate as coexisting rods and particulates, however the annealing twinning is sharply reduced, and no typical texture type exists. The tensile test results show that (VCoNi)99.9C0.1 exhibits an optimal strength-ductility balance, which may be attributed to the appropriate size and distribution of the particles, resulting in fine grain strengthening, interstitial strengthening and particles strengthening. The friction and wear test results show that the wear property of the EMAs is improved due to the C addition, which is mainly attributed to the weakened abrasive wear mechanism and the enhanced adhesive and oxidative wear mechanisms. Therefore, the addition of appropriate amount of C is conducive to optimize the microstructure of (VCoNi)MEA and further improve the mechanical and wear properties.

Key words:  metallic materials      medium entropy alloy      microstructure      texture      mechanical property      wear property     
Received:  21 June 2022     
ZTFLH:  TG139  
Fund: Scientific Research Project of Chongqing University of Technology(KLA22007)
Corresponding Authors:  TU Jian, Tel: (023)62563178, E-mail: tujian@cqut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.341     OR     https://www.cjmr.org/EN/Y2023/V37/I9/685

Fig.1  Phases fraction as function of temperature for (VCoNi)100-x C x (x=0, 0.1, 0.4, 1 and 2.8) samples (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8
Fig.2  SEM images of as-homogenized samples: (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8
Fig.3  EDS element distribution of as-homogenized samples (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8
Fig.4  EBSD of as-homogenized samples (VCoNi)100-x C x (x=0, 0.1, 0.4, 1 and 2.8) (a~e). inverse pole figure (a1~e1); phase maps (a2~e2) and grains boundary maps(a3~e3)
Fig.5  φ2=45°, 65° and 90° sections of ODF for the as-homogenized samples (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8
Fig.6  Volume fractions of main texture components in as-homogenized samples with different C contents
Fig.7  SEM images of microstructure for the as-recrystallized samples (a) C0; (b) C0.1;(c) C0.4
Fig.8  EBSD maps of as-recrystallized (VCoNi)100-x C x (x=0, 0.1 and 0.4) samples in (a~c), respectively (a1~c1) IPF maps; (a2~c2) phase maps; (a3~c3) GB maps
Fig.9  φ2=45°, 65° and 90° sections of the ODFs (determined by EBSD) of as-recrystallized C0 sample in (a), C0.1 sample in (b), C0.4 sample in (c)
Fig.10  Volume fractions of main texture components in as-recrystallized samples with different C contents
Fig.11  representative tensile engineering stress-strain curves(a); corresponding strain-hardening rate curves (b); fracture surfaces of as-recrystallized C0, C0.1 and C0.4 samples are shown in (c), (d) and (e)

Yield Strength

/ MPa

Ultimate tensile strength

/ MPa

Elongation

/ %

C0528.301003.2954.23
C0.1744.621193.8639.25
C0.4686.681130.2239.37
Table 1  Yield strength, ultimate tensile strength and elongation of (VCoNi)100-x C x medium entropy alloy
Fig.12  Real time friction coefficient (a); average friction coefficient and wear rate (b); wear scar profile (c); wear scar morphology of as-recrystallized C0 sample (d), C0.1 sample (e) and C0.4 sample (f)
1 Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Mater. Res. Lett., 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
2 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
4 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mat. Sci. Eng. A-Struct., 2004, 375: 213
5 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
6 Lin Q, Liu J, An X, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy [J], Mater. Res. Lett., 2018(6): 236
7 Yang T, Guo W, Poplawsky J D, et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation [J], Acta Mater., 2020(188): 1
8 Schneider M, George E P, Manescau T J, et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy [J]. Int. J. Plast., 2020(124): 155
9 Nam S, Kim C, Kim Y M. Recent studies of the lasercladding of high entropy alloys [J]. J. Weld. & Join., 2017, 35(4): 58
10 Agustianingrum M P, Park N, Yoshida S, et al. Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy [J]. J. Alloy Compd., 2019(781): 866
11 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698
doi: 10.1016/j.intermet.2011.01.004
12 Lu C, Niu L, Chen N, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7(1): 13564
doi: 10.1038/ncomms13564
13 Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride -containing sulphate solutions [J]. Corros. Sci., 2010, 52(10): 3481
doi: 10.1016/j.corsci.2010.06.025
14 Svoboda J, Ecker W, Razumovskiy V I, et al. Kinetics of interaction of impurity interstitials with dislocations revisited [J]. Prog. Mater. Sci., 2019, 101: 172
doi: 10.1016/j.pmatsci.2018.10.001
15 Moon J, Jang M J, Bae J W, et al. Mechanical behavior and solid solution strengthening model for face-centered cubic single crystalline and polycrystalline high-entropy alloys [J]. Intermetallics, 2018, 98: 89
doi: 10.1016/j.intermet.2018.04.022
16 Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31(8): 8
17 Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
doi: 10.1016/j.actamat.2020.03.048
18 ChenY, Tu J, Zhang Y B, et al. Effect of deformation and annealing process on microstructural evolution of Fe47Mn30Co10Cr10B3 high entropy alloy [J]. Chin. J. Mater. Res., 2021, 35(2): 143
陈 扬, 涂 坚, 张琰斌 等. 形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响 [J]. 材料研究学报, 2021, 35(2): 143
19 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. U S A, 2018, 115(28): 7224
doi: 10.1073/pnas.1807817115
20 Shang Y Y, Wu Y, He J Y, et al. Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon [J]. Intermetallics, 2019, 106: 77
doi: 10.1016/j.intermet.2018.12.009
21 Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. J. Alloy Compd., 2017, 693: 394
doi: 10.1016/j.jallcom.2016.09.208
22 Wang Z W, Lu W J, Raabe D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. J. Alloy Compd., 2019, 781: 734
doi: 10.1016/j.jallcom.2018.12.061
23 Saha J, Bhattacharjee P P. Influences of Thermomechanical Processing by Severe Cold and Warm Rolling on the Microstructure, Texture, and Mechanical Properties of an Equiatomic CoCrNi Medium-Entropy Alloy [J]. J. Mater. Eng. Perform., 2021, 30(12): 8956
doi: 10.1007/s11665-021-06092-6
24 Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Alloy Compd., 2014, 587: 544
doi: 10.1016/j.jallcom.2013.10.237
25 Xiao J K, Tan H, Chen J, et al. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys [J]. J. Alloy Compd., 2020, 847: 156533
doi: 10.1016/j.jallcom.2020.156533
26 Liu J Z, Liu H X, Di Y N, et al. Effects of carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiC x high entropy alloy coatings [J]. China Surface Engineering, 2020, 33(6): 118
刘径舟, 刘洪喜, 邸英南 等. 碳含量对激光熔覆CoCrFeMnNiC x 熵合金涂层摩擦磨损和耐蚀性能的影响 [J]. 中国表面工程, 2020, 33(6): 118
27 Deng L, Bai C Y, Jiang Z T, et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy [J]. Mat. Sci. Eng. A, 2021, 822: 141642
doi: 10.1016/j.msea.2021.141642
28 Andersson J O, Helander T, Hoglund L H, et al. THERMO-CALC and DICTRA, computational tools for materials science [J]. Calphad, 2002, 26(2): 273
doi: 10.1016/S0364-5916(02)00037-8
29 Sathiaraj G D, Bhattacharjee P P. Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy [J]. Mater. Charact., 2015, 109: 189
doi: 10.1016/j.matchar.2015.09.027
30 Li Z Q, Wang J S, Huang H B. Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline [J]. J. Alloy Compd., 2020, 818: 10
31 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater, 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
32 Suzuki S, Abiko K, Kimura H. Chemical state of phosphorus segregated at grain boundaries in iron [J]. Transactions of the Iron and Steel Institute of Japan, 1983, 23(9): 746
doi: 10.2355/isijinternational1966.23.746
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!