Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 571-580    DOI: 10.11901/1005.3093.2022.481
ARTICLES Current Issue | Archive | Adv Search |
Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy
XU Lijun1,2, ZHENG Ce1, FENG Xiaohui1, HUANG Qiuyan1(), LI Yingju1(), YANG Yuansheng1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy. Chinese Journal of Materials Research, 2023, 37(8): 571-580.

Download:  HTML  PDF(19213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to an orthogonal experiment design, the directional recrystallization of hot-rolled Cu71Al18Mn11 alloy with deformation degree of 75% was carried out at 800, 850 and 900℃, by drawing speed of 2, 5 and 15 μm/s respectively. The effect of process parameters on the directional recrystallization microstructure and superelasticity of the hot-rolled Cu71Al18Mn11 alloy was assessed, meanwhile, the directional recrystallization mechanism was analyzed. The results show that the directional recrystallization effect may firstly increase and then decrease with the increase of drawing speed. When the drawing speed is 2 μm/s, a small number of columnar grains emerged within the coarse equiaxed grains. When the drawing speed increases to 5 μm/s, the microstructure of columnar grains with large aspect ratio can be obtained. However, when the drawing speed further increases to 15 μm/s, the directional recrystallization microstructure is a mixture of columnar grains and equiaxed grains. The superelastic properties are better of the directionally recrystallized alloys with columnar grains of large aspect ratio. After being subjected to an applied strain of 12%, the alloy directionally recrystallized at 900℃- 5 μm/s presents a residual strain of only 1.1%, while a superelastic strain of 9.05%. The drawing velocity and hot zone temperature can affect the speed, at which the columnar grains swallowed up the primary recrystallized grains ahead in the process of directional recrystallization, thus affecting the microstructure of directionally recrystallized alloy. Once, the three speeds, i.e. the hot zone movement, the columnar grains swallowing up the primary recrystallized grains ahead and the generation of new primary recrystallization grains, all are in equilibrium, the front boundary of the existing columnar grains will continues to move forward, which will eventually promote the formation of microstructure of columnar grains with large aspect ratio.

Key words:  metallic materials      Cu-Al-Mn      directional recrystallization      superelastic property      secondary recrystallization     
Received:  06 September 2022     
ZTFLH:  TG146.1  
Fund: National Key Research and Development Program of China(2018YFE0115800)
Corresponding Authors:  LI Yingju, Tel: 13840520360, E-mail: yjli@imr.ac.cn;
HUANG Qiuyan, Tel: 18512416690, E-mail: qyhuang16b@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.481     OR     https://www.cjmr.org/EN/Y2023/V37/I8/571

Fig.1  Schematic of the core part of directional recrystallization equipment
Fig.2  Schematic of cyclic loading-unloading tensile test sample (unit:mm)
Fig.3  Temperature curves of samples before entering hot zone under different temperature gradients (a) system A; (b) system B; (c) system C
Fig.4  Optical micrographs of hot-rolled Cu71Al18Mn11 DRred at different temperature gradients (a) A-850℃-2 μm/s, (b) A-850℃-5 μm/s, (c) A-850℃-15 μm/s, (d) B-850℃-2 μm/s, (e) B-850℃-5 μm/s, (f) B-850℃-15 μm/s, (g) C-900℃-2 μm/s, (h) C-900℃-5 μm/s, (i) C-900℃-15 μm/s
Fig.5  Optical micrographs of hot-rolled Cu71Al18Mn11 DRred at different process parameters (a) 800℃-2 μm/s, (b) 800℃-5 μm/s, (c) 800℃-15 μm/s, (d) 850℃-2 μm/s, (e) 850℃-5 μm/s, (f) 850℃-15 μm/s, (g) 900℃-2 μm/s, (h) 900℃-5 μm/s, (i) 900℃-15 μm/s
Fig.6  Histogram of columnar grain size of samples DRed at different temperatures with a drawing speed of 5 μm/s
Fig.7  Cyclic loading-unloading tensile curves of hot-rolled Cu71Al18Mn11 DRed at different process parameters (a) 800℃-2 μm/s, (b) 800℃-5 μm/s, (c) 800℃-15 μm/s, (d) 850℃-2 μm/s, (e) 850℃-5 μm/s, (f) 850℃-15 μm/s, (g) 900℃- 2 μm/s, (h) 900℃-5 μm/s, (i) 900℃-15 μm/s
Fig.8  Residual strain (εr) (a) and superelastic strain (εSE) (b) curves of hot-rolled Cu71Al18Mn11 DRred at different process parameters
Fig.9  Relationship between superelastic strain (εSE) and applied strain (εt-εθ) for DRed samples with different process parameters
Drawing velocity /μm·s-12515
Annealling temperature/℃800850900800850900800850900
εSEMAX / %6.347.589.997.757.5411.653.544.978.71
εrMAX / %6.406.554.3410.594.004.245.369.559.41
Table 1  Maximum superelastic strain (εSEMAX) and corresponding residual strain (εrMAX) of DRed samples with different parameters
Fig.10  Overall optical micrographs of hot-rolled Cu71Al18Mn11 DRred at different temperatures with a drawing speed of 5 μm/s (a) 800℃, (b) 850℃, (c) 900℃
Fig.11  Inverse pole figure of columnar grains of samples DRred at different temperatures with a drawing speed of 5 μm/s (a) 800℃, (b) 850℃, (c) 900℃
Fig.12  Optical micrographs of hot-rolled Cu71Al18Mn11 alloy after isothermal annealing (a) 700℃-10 min, (b) 700℃-20 min, (c) 700℃-30 min, (d) 750℃-10 min, (e) 750℃-20 min, (f) 750℃-30 min
Fig.13  Inverse pole figure (a), recrystallization fraction (b) and grain boundary distribution (c) of hot rolled Cu71Al18Mn11 alloy after annealing at 700℃ for 30 min and inverse pole figure (d) and grain boundary distribution (e) after annealing at 750℃ for 20 min
Fig.14  Diagram of equiaxial grains (a) and columnar grains (b) growth in directional recrystallization
1 Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
2 Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review [J]. Prog. Mater. Sci., 2012, 57(5): 911
doi: 10.1016/j.pmatsci.2011.11.001
3 Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21(6): 561
张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J] 材料研究学报, 2007, 21(6): 561
4 Li Z, Wang M P, Xu G Y. Materials of Cu-based Shape Memory Alloys [M]. Changsha: Central South University Press, 2010
李 周, 汪明朴, 徐根应. 铜基形状记忆合金材料 [M]. 长沙: 中南大学出版社, 2010
5 Suezawa M, Sumino K. Behaviour of elastic constants in Cu-Al-Ni alloy in the close vicinity of Ms-point [J]. Scr. Metall., 1976, 10(9): 789
doi: 10.1016/0036-9748(76)90294-5
6 Guenin G, Morin M, Gobin P F, et al. Elastic constant measurements in β Cu-Zn-Al near the martensitic transformation temperature [J]. Scr. Metall., 1977, 11(12): 1071
doi: 10.1016/0036-9748(77)90310-6
7 Mercier O, Melton K N, Gremaud G, et al. Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation [J]. J. Appl. Phys., 1980, 51(3): 1833
doi: 10.1063/1.327750
8 Miyazaki S, Kawai T, Otsuka K. On the origin of intergranular fracture in β phase shape memory alloys [J]. Scr. Metall., 1982, 16(4): 431
doi: 10.1016/0036-9748(82)90167-3
9 Liu J L. The basic research on proprieties and preparation process of columnar-grained Cu71Al18Mn11 shape memory alloy [D]. Beijing: University of Science & Technology Beijing, 2016
刘记立. 柱状晶组织Cu71Al18Mn11形状记忆合金的性能及制备加工基础研究 [D]. 北京: 北京科技大学, 2016
10 Baker I, Li J. Directional annealing of cold-rolled copper single crystals [J]. Acta Mater., 2002, 50(4): 805
doi: 10.1016/S1359-6454(01)00384-6
11 Yang C, Baker I. Directional recrystallisation processing: a review [J]. Int. Mater. Rev., 2021, 66: 256
doi: 10.1080/09506608.2020.1819688
12 Li J, Johns S L, Iliescu B M, et al. The effect of hot zone velocity and temperature gradient on the directional recrystallization of polycrystalline nickel [J]. Acta Mater., 2002, 50(18): 4491
doi: 10.1016/S1359-6454(02)00265-3
13 Li J, Baker I. An EBSP study of directionally recrystallized cold-rolled nickel [J]. Mater. Sci. Eng. A, 2005, 392 (1-2): 8
doi: 10.1016/j.msea.2004.07.017
14 Zhang Z W, Chen G L, Chen G. Microstructural evolution of commercial pure iron during directional annealing [J]. Mater. Sci. Eng. A, 2006, 422 (1-2): 241
doi: 10.1016/j.msea.2006.02.001
15 Zhang Z W, Chen G, Chen G L. Dynamics and mechanism of columnar grain growth of pure iron under directional annealing [J]. Acta Mater., 2007, 55(17): 5988
doi: 10.1016/j.actamat.2007.07.019
16 Zhang Z W, Chen G, Bei H B, et al. Directional recrystallization and microstructures of an Fe-6.5wt%Si alloy [J]. J. Mater. Res., 2011, 24(8): 2654
doi: 10.1557/jmr.2009.0303
17 Hotzler R K, Glasgow T K. The influence of γ'on the recrystallization of an oxide dispersion strengthened superalloy-ma 6000e [J]. Metall. Trans. A, 1982, 13 (10): 1665
doi: 10.1007/BF02647821
18 Marsh J M, Martin J W. Micromechanisms of texture development during zone annealing of MA 6000 extrusions [J]. Mater. Sci. Technol., 1991, 7(2): 183
doi: 10.1179/mst.1991.7.2.183
19 Mujahid M, Martin J W. Development of microstructures of high grain aspect ratio during zone annealing of oxide dispersion strengthened superalloys [J]. Mater. Sci. Technol., 1994, 10(8): 703
doi: 10.1179/mst.1994.10.8.703
20 Zhang Z W, Chen G L, Chen G. The effect of drawing velocity and phase transformation on the structure of directionally annealed iron [J]. Mater. Sci. Eng. A, 2006, 434 (1-2): 58
doi: 10.1016/j.msea.2006.07.016
21 Zhang Z W, Wang W H, Zou Y, et al. Control of grain boundary character distribution and its effects on the deformation of Fe–6.5 wt.% Si [J]. J. Alloys Compd., 2015, 639: 40
doi: 10.1016/j.jallcom.2015.03.129
22 Xin X L. Effect of directional recrystallization process on microstructure and properties of alloys [D]. Harbin: Harbin Engineering University, 2019
辛显亮. 定向再结晶工艺对合金微结构及性能影响 [D]. 哈尔滨: 哈尔滨工程大学, 2019
23 Yang C, Baker I. Elevated temperature directional recrystallization of high-purity nickel [J]. Philos. Mag., 2019, 99(9): 1057
doi: 10.1080/14786435.2019.1576936
24 Cairns R L, Curwick L R, Benjamin J S. Grain growth in dispersion strengthened superalloys by moving zone heat treatments [J]. Metall. Trans. A, 1975, 6 (1): 179
doi: 10.1007/BF02673686
25 Yang C, Baker I. Effect of solute on microstructural evolution during directional recrystallization [J]. J. Alloys Compd., 2020, 815: 152358
doi: 10.1016/j.jallcom.2019.152358
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[8] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[9] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[10] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[15] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
No Suggested Reading articles found!