|
|
Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy |
XU Lijun1,2, ZHENG Ce1, FENG Xiaohui1, HUANG Qiuyan1( ), LI Yingju1( ), YANG Yuansheng1 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy. Chinese Journal of Materials Research, 2023, 37(8): 571-580.
|
Abstract According to an orthogonal experiment design, the directional recrystallization of hot-rolled Cu71Al18Mn11 alloy with deformation degree of 75% was carried out at 800, 850 and 900℃, by drawing speed of 2, 5 and 15 μm/s respectively. The effect of process parameters on the directional recrystallization microstructure and superelasticity of the hot-rolled Cu71Al18Mn11 alloy was assessed, meanwhile, the directional recrystallization mechanism was analyzed. The results show that the directional recrystallization effect may firstly increase and then decrease with the increase of drawing speed. When the drawing speed is 2 μm/s, a small number of columnar grains emerged within the coarse equiaxed grains. When the drawing speed increases to 5 μm/s, the microstructure of columnar grains with large aspect ratio can be obtained. However, when the drawing speed further increases to 15 μm/s, the directional recrystallization microstructure is a mixture of columnar grains and equiaxed grains. The superelastic properties are better of the directionally recrystallized alloys with columnar grains of large aspect ratio. After being subjected to an applied strain of 12%, the alloy directionally recrystallized at 900℃- 5 μm/s presents a residual strain of only 1.1%, while a superelastic strain of 9.05%. The drawing velocity and hot zone temperature can affect the speed, at which the columnar grains swallowed up the primary recrystallized grains ahead in the process of directional recrystallization, thus affecting the microstructure of directionally recrystallized alloy. Once, the three speeds, i.e. the hot zone movement, the columnar grains swallowing up the primary recrystallized grains ahead and the generation of new primary recrystallization grains, all are in equilibrium, the front boundary of the existing columnar grains will continues to move forward, which will eventually promote the formation of microstructure of columnar grains with large aspect ratio.
|
Received: 06 September 2022
|
|
Fund: National Key Research and Development Program of China(2018YFE0115800) |
Corresponding Authors:
LI Yingju, Tel: 13840520360, E-mail: yjli@imr.ac.cn; HUANG Qiuyan, Tel: 18512416690, E-mail: qyhuang16b@imr.ac.cn
|
1 |
Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
|
2 |
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review [J]. Prog. Mater. Sci., 2012, 57(5): 911
doi: 10.1016/j.pmatsci.2011.11.001
|
3 |
Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21(6): 561
|
|
张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J] 材料研究学报, 2007, 21(6): 561
|
4 |
Li Z, Wang M P, Xu G Y. Materials of Cu-based Shape Memory Alloys [M]. Changsha: Central South University Press, 2010
|
|
李 周, 汪明朴, 徐根应. 铜基形状记忆合金材料 [M]. 长沙: 中南大学出版社, 2010
|
5 |
Suezawa M, Sumino K. Behaviour of elastic constants in Cu-Al-Ni alloy in the close vicinity of Ms-point [J]. Scr. Metall., 1976, 10(9): 789
doi: 10.1016/0036-9748(76)90294-5
|
6 |
Guenin G, Morin M, Gobin P F, et al. Elastic constant measurements in β Cu-Zn-Al near the martensitic transformation temperature [J]. Scr. Metall., 1977, 11(12): 1071
doi: 10.1016/0036-9748(77)90310-6
|
7 |
Mercier O, Melton K N, Gremaud G, et al. Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation [J]. J. Appl. Phys., 1980, 51(3): 1833
doi: 10.1063/1.327750
|
8 |
Miyazaki S, Kawai T, Otsuka K. On the origin of intergranular fracture in β phase shape memory alloys [J]. Scr. Metall., 1982, 16(4): 431
doi: 10.1016/0036-9748(82)90167-3
|
9 |
Liu J L. The basic research on proprieties and preparation process of columnar-grained Cu71Al18Mn11 shape memory alloy [D]. Beijing: University of Science & Technology Beijing, 2016
|
|
刘记立. 柱状晶组织Cu71Al18Mn11形状记忆合金的性能及制备加工基础研究 [D]. 北京: 北京科技大学, 2016
|
10 |
Baker I, Li J. Directional annealing of cold-rolled copper single crystals [J]. Acta Mater., 2002, 50(4): 805
doi: 10.1016/S1359-6454(01)00384-6
|
11 |
Yang C, Baker I. Directional recrystallisation processing: a review [J]. Int. Mater. Rev., 2021, 66: 256
doi: 10.1080/09506608.2020.1819688
|
12 |
Li J, Johns S L, Iliescu B M, et al. The effect of hot zone velocity and temperature gradient on the directional recrystallization of polycrystalline nickel [J]. Acta Mater., 2002, 50(18): 4491
doi: 10.1016/S1359-6454(02)00265-3
|
13 |
Li J, Baker I. An EBSP study of directionally recrystallized cold-rolled nickel [J]. Mater. Sci. Eng. A, 2005, 392 (1-2): 8
doi: 10.1016/j.msea.2004.07.017
|
14 |
Zhang Z W, Chen G L, Chen G. Microstructural evolution of commercial pure iron during directional annealing [J]. Mater. Sci. Eng. A, 2006, 422 (1-2): 241
doi: 10.1016/j.msea.2006.02.001
|
15 |
Zhang Z W, Chen G, Chen G L. Dynamics and mechanism of columnar grain growth of pure iron under directional annealing [J]. Acta Mater., 2007, 55(17): 5988
doi: 10.1016/j.actamat.2007.07.019
|
16 |
Zhang Z W, Chen G, Bei H B, et al. Directional recrystallization and microstructures of an Fe-6.5wt%Si alloy [J]. J. Mater. Res., 2011, 24(8): 2654
doi: 10.1557/jmr.2009.0303
|
17 |
Hotzler R K, Glasgow T K. The influence of γ'on the recrystallization of an oxide dispersion strengthened superalloy-ma 6000e [J]. Metall. Trans. A, 1982, 13 (10): 1665
doi: 10.1007/BF02647821
|
18 |
Marsh J M, Martin J W. Micromechanisms of texture development during zone annealing of MA 6000 extrusions [J]. Mater. Sci. Technol., 1991, 7(2): 183
doi: 10.1179/mst.1991.7.2.183
|
19 |
Mujahid M, Martin J W. Development of microstructures of high grain aspect ratio during zone annealing of oxide dispersion strengthened superalloys [J]. Mater. Sci. Technol., 1994, 10(8): 703
doi: 10.1179/mst.1994.10.8.703
|
20 |
Zhang Z W, Chen G L, Chen G. The effect of drawing velocity and phase transformation on the structure of directionally annealed iron [J]. Mater. Sci. Eng. A, 2006, 434 (1-2): 58
doi: 10.1016/j.msea.2006.07.016
|
21 |
Zhang Z W, Wang W H, Zou Y, et al. Control of grain boundary character distribution and its effects on the deformation of Fe–6.5 wt.% Si [J]. J. Alloys Compd., 2015, 639: 40
doi: 10.1016/j.jallcom.2015.03.129
|
22 |
Xin X L. Effect of directional recrystallization process on microstructure and properties of alloys [D]. Harbin: Harbin Engineering University, 2019
|
|
辛显亮. 定向再结晶工艺对合金微结构及性能影响 [D]. 哈尔滨: 哈尔滨工程大学, 2019
|
23 |
Yang C, Baker I. Elevated temperature directional recrystallization of high-purity nickel [J]. Philos. Mag., 2019, 99(9): 1057
doi: 10.1080/14786435.2019.1576936
|
24 |
Cairns R L, Curwick L R, Benjamin J S. Grain growth in dispersion strengthened superalloys by moving zone heat treatments [J]. Metall. Trans. A, 1975, 6 (1): 179
doi: 10.1007/BF02673686
|
25 |
Yang C, Baker I. Effect of solute on microstructural evolution during directional recrystallization [J]. J. Alloys Compd., 2020, 815: 152358
doi: 10.1016/j.jallcom.2019.152358
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|