Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 463-471    DOI: 10.11901/1005.3093.2022.436
ARTICLES Current Issue | Archive | Adv Search |
Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy
LEI Zhiguo, WEN Shengping(), HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Cite this article: 

LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy. Chinese Journal of Materials Research, 2023, 37(6): 463-471.

Download:  HTML  PDF(11124KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rolling can accelerate the aging precipitation behavior, whilst shorten the incubation time for the emerge of peak aging. The Al-2Mg-0.8Cu alloy with 80% reduction reaches peak aging after annealing for 1 h. The maximum solid solubility of Si in Al-2Mg-0.8Cu alloy is 0.3% (mass fraction), which can further accelerate the kinetics process of aging precipitation and refine the size of S-phase. The Al-2Mg-0.8Cu-0.15Si alloy after cold rolling with 40% reduction achieved the properties of yield strength of 240 MPa, tensile strength of 353 MPa, elongation at break of 16.5% and tensile strength-plastic product of 5.66 GPa·%. 40% cold rolling reduction and addition of 0.15% Si (mass fraction) are the optimal process combination to obtain the best mechanical properties.

Key words:  metallic materials      Al-Mg-Cu      cold rolling      micro alloying      microstructure      mechanical property     
Received:  15 August 2022     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2021YFB370902);National Key Research and Development Program of China(2021YFB3704204);National Key Research and Development Program of China(2021YFB3704205);National Natural Science Foundation of China for Innovation Research Project(5162-1003);Beijing Lab Project for Modern Transportation Metallic Materials and Processing Technology
Corresponding Authors:  WEN Shengping, Tel: 13552521441, E-mail: wensp@bjut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.436     OR     https://www.cjmr.org/EN/Y2023/V37/I6/463

NumberAlloyMgCuSiAl
AAl-2.0Mg-0.8Cu2.000.69-Bal.
A-0.15SiAl-2.0Mg-0.8Cu-0.15Si2.200.770.15Bal.
A-0.30SiAl-2.0Mg-0.8Cu-0.30Si1.980.900.35Bal.
A-0.50SiAl-2.0Mg-0.8Cu-0.50Si1.900.880.48Bal.
Table 1  Chemical composition of samples (mass fraction, %)
Fig.1  DSC curves of as-cast Al-Mg-Cu(-Si) alloy
Fig.2  BSE microstructure of the as-cast and as-solutionized treated microstructure (a) as-cast Al-2Mg-0.8Cu; (b) solid solution Al-2Mg-0.8Cu; (c) as-cast Al-2Mg-0.8Cu-0.15Si; (d) solid solution Al-2Mg-0.8Cu-0.15Si; (e) as-cast Al-2Mg-0.8Cu-0.30Si; (f) solid solution Al-2Mg-0.8Cu-0.30Si
Fig.3  SEM and EDS result of as-cast Al-2Mg-0.8Cu-0.30Si
SpectrogramAlMgSiCuPhase
4466.1917.413.4512.95Al2CuMg
4572.0114.620.0613.31Al2CuMg
Table 2  EDS results of the as-cast Al-2Mg-0.8Cu-0.30Si alloy ( atomic fraction, %)
Fig.4  Phase diagram of Al-Mg-Cu alloy
Fig.5  SEM images of Al-2Mg-0.8Cu-0.50Si (a) as-cast; (b) solid solution
SpectrogramAlMgSiCuPhase
2538.0139.7022.210.09Mg2Si
2669.2318.6811.970.12Mg2Si
Table 3  EDS results of the primary phase in as-cast Al-2Mg-0.8Cu-0.50Si alloy ( atomic fraction, %)
Fig.6  SEM and EDS of residual primary phase in as-cast Al-2Mg-0.8Cu-0.50Si alloy
Fig.7  Hardness curve of Al-Mg-Cu(-Si) alloy after isothermal annealing at 175℃ (a) deformation of 40% ; (b) deformation of 80%
Fig.8  Tensile properties of cold rolling Al-2Mg-0.8Cu(-Si) alloy (a) deformation of 40%; (b) deformation of 80%
Fig. 9  Tensile properties of cold rolling Al-2Mg-0.8Cu(-Si) alloy annealing at 175℃ (a) Al-2Mg-0.8Cu; (b) Al-2Mg-0.8Cu-0.15Si; (c) Al-2Mg-0.8Cu-0.30Si; (d) Al-2Mg-0.8Cu-0.50Si
Fig. 10  Tensile properties of cold rolling Al-2Mg-0.8Cu(-Si) alloy annealing at 175℃ (a) Al-2Mg-0.8Cu; (b) Al-2Mg-0.8Cu-0.15Si; (c) Al-2Mg-0.8Cu-0.30Si; (d) Al-2Mg-0.8Cu-0.50Si
Fig.11  TEM images of 40% deformation cold-rolled Al-2Mg-0.8Cu alloy annealed at 175℃ for (a) 4 h;(b) 8 h;(c) 120 h
Fig.12  TEM images of 80% deformation cold-rolled Al-2Mg-0.8Cu alloy annealed at 175oC (a, b) 1 h, (c, d) 2 h, (e, f ) 120 h
1 Burger G B, Gupta A K, Jeffrey P W, et al. Microstructural control of aluminum sheet used in automotive applications [J]. Mater. Charact., 1995, 35(1): 23
doi: 10.1016/1044-5803(95)00065-8
2 Mihara M, Kobayashi E, Sato T. Rapid age-hardening behavior of Al-Mg-Cu (-Ag) alloys and incubation stage in the low-temperature aging [J]. Mater. Trans., 2013, 54(10): 1898
doi: 10.2320/matertrans.MAW201315
3 Ratchev P, Verlinden B, De Smet P, et al. Artificial ageing of Al-Mg-Cu alloys [J]. Mater. Trans., JIM, 1999, 40(1): 34
doi: 10.2320/matertrans1989.40.34
4 Ratchev P, Verlinden B, De Smet P, et al. Precipitation hardening of an Al-4.2wt% Mg-0.6wt% Cu alloy [J]. Acta Mater., 1998, 46(10): 3523
doi: 10.1016/S1359-6454(98)00033-0
5 Chen X L, Kim D, Minho O, et al. Effect of pre-deformation on age-hardening behaviors in an Al-Mg-Cu alloy [J]. Mater. Sci. Eng., 2021, 820A: 141557
6 Xia J H, Sha G, Chen Z G, et al. Precipitation of quasicrystal approximant phases in an Al-Mg-Cu-Ge alloy [J]. Philos. Mag. Lett., 2013, 93(2): 77
doi: 10.1080/09500839.2012.745016
7 Mihara M, Marioara C D, Andersen S J, et al. Precipitation in an Al-Mg-Cu alloy and the effect of a low amount of Ag [J]. Mater. Sci. Eng., 2016, 658A: 91
8 Macchi C, Tolley A, Giovachini R, et al. Influence of a microalloying addition of Ag on the precipitation kinetics of an Al-Cu-Mg alloy with high Mg: Cu ratio [J]. Acta Mater., 2015, 98: 275
doi: 10.1016/j.actamat.2015.07.032
9 Sun L P, Irving D L, Zikry M A, et al. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al|Ω interface in a Al-Cu-Mg-Ag alloy [J]. Acta Mater., 2009, 57(12): 3522
doi: 10.1016/j.actamat.2009.04.006
10 Chen Y T, Nieh G Y, Wang J H, et al. Effects of Cu/Mg ratio and heat treatment on microstructures and mechanical properties of Al-4.6Cu-Mg-0.5Ag alloys [J]. Mater. Chem. Phys., 2015, 162: 764
doi: 10.1016/j.matchemphys.2015.07.001
11 Guo M X, Sha G, Cao L Y, et al. Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition [J]. Mater. Chem. Phys., 2015, 162: 15
doi: 10.1016/j.matchemphys.2015.07.033
12 Li C, Sha G, Gun B, et al. Enhanced age-hardening response of Al-4Mg-1Cu (wt.%) microalloyed with Ag and Si [J]. Scr. Mater., 2013, 68(11): 857
doi: 10.1016/j.scriptamat.2013.02.009
13 Hutchinson C R, Ringer S P. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si [J]. Metall. Mater. Trans., 2000, 31A(11) : 2721
14 Liang S S, Wen S P, Liu Q X, et al. Effect of Si and Er on aging precipitation behavior of Al-Zr alloys [J]. Chin. J. Nonferrous Met., 2022, 32(3): 619
梁上上, 文胜平, 刘祺祥 等. Si、Er对Al-Zr合金时效析出行为的影响 [J]. 中国有色金属学报, 2022, 32(3): 619
15 Li C, Sha G, Xia J H, et al. Si-induced precipitation modification and related age-hardening response of an Al-4Mg-1Cu-0.5Si alloy [J]. Mater. Chem. Phys., 2017, 193: 421
doi: 10.1016/j.matchemphys.2017.01.041
16 Song Y F. The effects of Ag and Mg content on mechanical properties and microstructure of Al-Cu-Mg alloys [D]. Changsha: Central South University, 2013
宋艳芳. Ag、Mg含量对Al-Cu-Mg合金力学性能和微观组织的影响 [D]. 长沙: 中南大学, 2013
17 Yuan X M, Zhang E Q, Wen S P, et al. Influence of silicon on aging hardening behavior of Al-Mg-Cu alloy [J]. J. Mater. Sci. Eng., 2021, 39(3): 466
袁晓明, 张二庆, 文胜平 等. Si对Al-Mg-Cu合金时效析出行为的影响 [J]. 材料科学与工程学报, 2021, 39(3): 466
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!