Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 271-280    DOI: 10.11901/1005.3093.2022.271
ARTICLES Current Issue | Archive | Adv Search |
Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy
LI Pengyu1,2, LIU Zitong2,3, KANG Shumei1(), CHEN Shanshan2()
1.School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Cite this article: 

LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy. Chinese Journal of Materials Research, 2023, 37(4): 271-280.

Download:  HTML  PDF(8241KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polybutylene adipate (PBA) protective coating was prepared on fluorinated AZ31 Mg-alloy by uniform speed lifting method and then the coated Mg-alloys were subjected to plasma treatment with different power and time. The effect of plasma treatment on the surface morphology, phase composition and surface wettability of PBA protective coating were characterized by means of scanning electron microscope (SEM), X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscope (FT-IR) and contact angle measuring instrument. The corrosion resistance of the coated Mg-alloy was characterized by potentiodynamic polarization curve measurement and electrochemical impedance spectroscope (EIS). The biological activity of the protective coatings was verified by comparing the cells adhesion on the coating surface before and after plasma treatment. Results show that plasma treatment could increase the surface roughness of PBA protective coating, increase the oxygen atom proportion, and thereby enhance the wettability of the coating surface obviously. However, plasma treatment reduced the corrosion resistance of the PBA coated Mg-alloy to a certain extent, but its corrosion current density was 2~3 orders of magnitude lower than that of the AZ31 Mg-alloy without protective coating and the fluorinated ones. In sum, the PBA protective coating can provide effective protection for Mg-alloy substrate, and the EIS curve also showed the same results. Besides, Cell adhesion on the surface of plasma treated samples increased significantly.

Key words:  metallic materials      magnesium alloy      protective coating      plasma treatment      wettability      corrosion resistance     
Received:  11 May 2022     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51901227);National Natural Science Foundation of China(81873918);Youth Innovation Promotion Association, Chinese Academy of Sciences(2019194)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.271     OR     https://www.cjmr.org/EN/Y2023/V37/I4/271

MaterialsAlSiCaZnMnFeCuNiMg
AZ312.5~3.50.080.040.6~1.40.2~1.00.0030.010.001Bal.
Table 1  Chemical composition of AZ31 magnesium alloy (mass fractiom,%)
NaClKClNa2HPO4·12H2OKH2PO4
8.00.22.890.2
Table 2  PBS solution formulation (g/L)
Fig.1  Microscopic morphology of PBA protective coating before and after plasma treatment (a) without plasma treatment; (b) plasma treatment power of 20 W for 60 s; (c) plasma treatment power 60 W for 60 s
Fig.2  XPS patterns of protective coatings before and after plasma treatment
Sample statusElementIntegral areaProportion of each element
Without plasma treatmentC1s88447.1948.66%
O1s93320.8451.34%
Treated with 60 W powerfor 60 sC1s90286.2643.75%
O1s116098.7456.25%
Treated with 60 W power for 180 sC1s89516.2440.84%
O1s129666.159.16%
Treated with 60 W power for 300 sC1s85391.1640.15%
O1s127311.6359.85%
Table 3  Proportion of C and O elements in protective coatings before and after plasma treatment
Fig.3  FT-IR patterns of protective coatings after different plasma treatments
Fig. 4  Partitioning of C and O elements of unplasma-treated PBA coating and 60 W/300 s plasma-treated PBA coating (a, b) peak separation of C and O elements of PBA coating without plasma treatment and (c, d) peak separation of C and O elements of PBA coating with 60 W/300 s plasma treatment
Sample groupC—O integral areaProportion of C—OC=O integral areaProportion of C=O
Without plasma treatment54677.8659.99%36461.4240.01%

Plasma treatment power

of 60 W for 300 s

55343.8145.29%66846.1354.71%
Table 4  Integral area and proportion of each oxygen-containing functional group after peak splitting
Fig.5  Contact angle and water droplet pattern of PBA coating with and without plasma treatment for different time
Fig.6  Contact angle and water droplet pattern of PBA coating with and without plasma-treatment at different power for same time
Fig.7  Tafel curves of Mg alloy with PBA protective coatings after different plasma treatments
SamplesMgFPBA60 W/20 s60 W/40 s60 W/60 s60 W/180 s60 W/300 s90 W/300 s120 W/300 s
Icorr/A∙cm-21.280×10-52.070×10-64.920×10-93.096×10-81.149×10-81.034×10-81.216×10-82.385×10-83.162×10-83.664×10-8
Ecorr / V-1.50-1.51-1.52-1.66-1.61-1.58-1.63-1.64-1.66-1.67
Pi / mm∙a-129.2484.720.01120.07070.02630.02360.02780.05450.07230.0837
Table 5  Fitting results of dynamic potential polarization curves of Mg alloy with PBA protective coatings after different plasma treatments
Fig.8  Macroscopic morphologies of Mg alloy with PBA protective coating after electrochemical measurement (a) before plasma treatment; (b) after plasma treatment
Fig. 9  Nyquist curves of Mg alloy with PBA protective coatings after different plasma treatments
Fig.10  Equivalent circuit model (a) equivalent circuit diagram of magnesium alloy substrate and fluorinated magnesium alloy; (b) equivalent circuit diagram of magnesium alloy with floride coating & PBA protective coating
SamplesRs / Ω∙cm2C / F∙cm-2Rf / Ω∙cm2CPE/F∙cm-2nRct / Ω∙cm2RL / Ω∙cm2L / H∙cm2
Mg1.993×10-4--1.503×10-50.81622.812×1041.666×1047.598×104
F4.236×10-4--9.100×10-50.92918.003×1045.672×1049.134×104
PBA1.336×10-46.824×10-102.168×1057.742×10-80.50013.487×107--
60 W/20 s5.552×10-47.176×10-109.280×1031.680×10-70.51497.169×106--
60 W/40 s1.520×10-41.005×10-105.886×1044.119×10-70.53588.251×106--
60 W/60 s6.237×10-47.070×10-101.179×1046.006×10-70.48322.044×107--
60 W/180 s5.367×10-42.578×10-109.079×1031.122×10-70.54938.132×106--
60 W/300 s8.897×10-46.154×10-102.009×1041.299×10-70.49467.548×106--
90 W/300 s7.762×10-41.347×10-101.619×1041.445×10-70.52715.980×106--
120 W/300 s8.545×10-43.271×10-102.399×1041.452×10-70.40196.861×106--
Table 6  Equivalent circuit diagram fitting results of samples with PBA protective coatings after different plasma treatments
Fig.11  Adhesion of human umbilical vein endothelial cells on the surface of Mg alloy with PBA protective coating before and after plasma treatment (a) samples without plasma treatment; (b) samples with plasma treatment at the power of 60 W for 60 s
Fig.12  Schematic diagram of the reaction of plasma technology with O2 for PBA protective coating
1 Zhou J, Ding Y. Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos. (Clin. Decis. Making Forum Ed.), 2006, 27(4): 36
周 江, 丁 彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36
2 Guo Y Y, Yu Z W, Zhang J. Research hotspots of magnesium alloy biomaterials in an in vivo animal[J]. Chin. J. Tissue Eng. Res., 2022, 26(22): 3556
郭洋妍, 喻正文, 张 剑. 镁合金生物材料动物体内实验的研究热点[J]. 中国组织工程研究, 2022, 26(22): 3556
3 DeCarlo C, Boitano L, Latz C, et al. Patients with failed femoropopliteal covered stents are more likely to present with acute limb ischemia than those with failed femoropopliteal bare-metal stents[J]. J. Vasc. Surg., 2020, 72(5): e363
4 Wang Y Y, Wu H M, Zhen W Q, et al. Research progress of biodegradable vascular stent[J]. Chin. J. Med. Instrument., 2021, 45(4): 410
王洋洋, 吴红枚, 甄文强 等. 生物可降解血管支架研究进展[J]. 中国医疗器械杂志, 2021, 45(4): 410
5 Ishizaki T, Masuda Y, Teshima K. Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection[J]. Surf. Coat. Technol., 2013, 217: 76
doi: 10.1016/j.surfcoat.2012.11.076
6 Zhang X P, Chen G. Immersion and electrochemical tests study on corrosion resistance of chrome-free chemical conversion film on AZ91D Mg alloy in 5 wt% NaCl solution[J]. Surf. Rev. Lett., 2005, 12(3): 417
doi: 10.1142/S0218625X05007244
7 Zain M Z M, Illias S, Mat Salleh M, et al. Improvement of corrosion resistance of rare earth element (REE)-based anodic oxidation coating on AZ91D magnesium alloy[J]. Appl. Mech. Mater., 2012, 187: 210
doi: 10.4028/www.scientific.net/AMM.187
8 Jiang X Z, Lu S, Tang L, et al. Influence of negative voltage on micro-arc oxidation of magnesium alloy under two steps voltage-increasing mode[J]. Key Eng. Mater., 2013, 575-576: 472
doi: 10.4028/www.scientific.net/KEM.575-576
9 Guo Q K, Lü Z Q, Zhang Y, et al. In vivo degradation behavior and histocompatibility of a novel fully biodegradable material: Poly trimethylene carbonate-Co-D, L-Lactide[J]. J. Clin. Rehab. Tissue Eng. Res., 2011, 15(34): 6368
郭清奎, 吕志前, 张 袆 等. 新型可完全降解材料聚外消旋乳酸-三亚甲基碳酸酯聚合物体内降解行为和组织相容性[J]. 中国组织工程研究与临床康复, 2011, 15(34): 6368
10 Lu R P, Zou Z C, Zhao F N, et al. Role and application of polylactic acid-hydroxyacetic acid copolymer scaffolds in bone defect repair and regeneration[J]. Chin. J. Tissue Eng. Res., 2022, 26(28): 4525
卢仁培, 邹志晨, 赵丰年 等. 聚乳酸-羟基乙酸共聚物复合支架在骨缺损修复再生中的作用与应用[J]. 中国组织工程研究, 2022, 26(28): 4525
11 Liu J, Zhai H Y, Sun Y N, et al. Developing high strength poly (L-lactic acid) nanofiber yarns for biomedical textile materials: A comparative study of novel nanofiber yarns and traditional microfiber yarns[J]. Mater. Lett., 2021, 300: 130229
doi: 10.1016/j.matlet.2021.130229
12 Yao F L, Liu C, Meng J H, et al. Poly(lactic acid)s with a controlled degradability[J]. Polym. Bull., 2003, (3): 47
姚芳莲, 刘 畅, 孟继红 等. 降解可控乳酸类聚合物[J]. 高分子通报, 2003, (3): 47
13 Turalija M, Bischof S, Budimir A, et al. Antimicrobial PLA films from environment friendly additives[J]. Composites, 2016, 102B: 94
14 Sui S Y, Ni G H, Xie H B, et al. Surface modification of polymethyl methacrylate by capacitive-coupled plasmas[J]. Chin. J. Vac. Sci. Technol., 2019, 39(8): 617
隋思源, 倪国华, 谢洪兵 等. 不同气氛低气压电容耦合放电等离子体对聚甲基丙烯酸甲酯表面的改性[J]. 真空科学与技术学报, 2019, 39(8): 617
15 Wang X P, Li W M, Wu Q Q, et al. Influence of plasma treatment on the surface property of polypropylene mesh for hernia repair[J]. J. Biomed. Eng. Res., 2020, 39(2): 167
王宪朋, 李文明, 吴倩倩 等. 等离子体处理技术对疝修补用聚丙烯网表面性能的影响[J]. 生物医学工程研究, 2020, 39(2): 167
16 Jiang N, Zhao L F, Gan Z H. Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals[J]. Polym. Degrad. Stab., 2010, 95(6): 1045
doi: 10.1016/j.polymdegradstab.2010.03.004
17 Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
doi: 10.1016/j.electacta.2014.01.135
18 Walter R, Kannan M B. In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid[J]. Mater. Lett., 2011, 65(4): 748
doi: 10.1016/j.matlet.2010.11.051
19 Jayaraj J, Amruth Raj S, Srinivasan A, et al. Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy[J]. Corros. Sci., 2016, 113: 104
doi: 10.1016/j.corsci.2016.10.010
20 Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys[J]. Electrochim. Acta, 2018, 260: 55
doi: 10.1016/j.electacta.2017.11.091
21 Gao F. Surface modification to modulate electrochemical corrosion behavior and biocompatibility of magnesium alloys biocompatibility[D]. Huaian: Huaiyin Institute of Technology, 2020
高 凡. 表面改性调控镁合金电化学腐蚀行为及生物相容性的研究[D]. 淮安: 淮阴工学院, 2020
22 Yu Y Q, Ding T T, Xue Y, et al. Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel[J]. J. Mater. Chem., 2016, 4B(4) : 801
23 Hong L, Liang X, Wei W, et al. Preparation and properties of biodegradable coating on magnesium alloy[J]. Surf. Technol., 2020, 49(11): 151
洪 柳, 梁 雪, 魏 玮 等. 镁合金表面可降解涂层的制备及其性能[J]. 表面技术, 2020, 49(11): 151-160.
24 Yi S, Yin G F, Zheng C Q. Relationship between surface interfacial properties of biomaterials and their hemocompatibility[J]. Chin. J. Oral Implantol., 2003, 8(2): 83
易 树, 尹光福, 郑昌琼. 生物材料表面界面特性与其血液相容性的关系[J]. 中国口腔种植学杂志, 2003, 8(2): 83
25 Jaleh B, Parvin P, Wanichapichart P, et al. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma[J]. Appl. Surf. Sci., 2010, 257(5): 1655
doi: 10.1016/j.apsusc.2010.08.117
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!