Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 95-101    DOI: 10.11901/1005.3093.2022.112
ARTICLES Current Issue | Archive | Adv Search |
Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides
LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun()
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides. Chinese Journal of Materials Research, 2023, 37(2): 95-101.

Download:  HTML  PDF(15207KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The two large surfaces of Cu-4.5%Al alloy sheet of 4mm in thickness was simultaneous sujected to mechanical grinding treatment at liquid nitrogen temperature for 2 min, then a Cu-Al alloy sandwich was acquired with two sides of gradient structure layer of ~250 μm in thickness, for which there should exist a negative gradient versus the distance to the alloy center in defect density of dislocations, faults, nano-twins etc. in the two surface layers. The evolution of shear bands of the sandwich alloy during tensile process was investigated by digital image correlation method. The results show that the locally concentrating of strain can be avoided by two-sided constrained gradient structure of the sandwich material, the uniform distribution of stress and strain may be beneficial to avoid the premature of plastic instability till the necking stage, in other word, a better work hardening ability can be maintained.

Key words:  nonferrous metals and alloys      gradient structure      toughening      defect density gradient      digital image correlation     
Received:  25 February 2022     
ZTFLH:  TG146.1+1  
Fund: National Natural Science Foundation of China(51664033);National Natural Science Foundation of China(51901091)
About author:  ZHU Xinkun, Tel: (0871)65109952, E-mail: xk_zhu@hotmail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.112     OR     https://www.cjmr.org/EN/Y2023/V37/I2/95

Fig.1  Size of tensile text samples (a), DIC speckle and observation area (b) and the area of microscopic characterization (c)
Fig.2  Microstructure of gradient layer (a) KAM map of the depth ~300 μm depth, characterized by EBSD, (b) The GND distribution map with depth, calculated by the average KAM statistics in (a), (c~e) TEM bright field image of ~30 μm, ~153 μm, ~246 μm depth, respectively
Fig.3  Comparison of true stress-strain curves before and after SMAT treatment (a, metallographic image with gradient layer in the background); TEM bright field image at gradient layer ~30 μm depth (b); Extended dislocation formation-decomposition of full dislocations into partial dislocations (c)
Fig.4  Observation of fracture features of gradient-structure sample (a) and coarse-grain sample (b)
Fig.5  Evolution of shear bands of CG sample (a) plastic strain distribution along the Y-axis at each global strain; (b) plastic strain distribution along the X-axis at each global strain
Fig.6  Evolution of shear bands of GS sample (a) plastic strain distribution along the Y-axis at each global strain; (b) plastic strain distribution along the X-axis at each global strain
Fig.7  Schematics of a GND pile-up, inducing back stress in the soft domain, which in turn induces forward stress in the hard domain[12] (a) andstress and strain variations along thickness direction on 0.2% average strain by finite element simulation (FEM)[30] (b)
1 Petch N J. The cleavage strength of polycrystals [J]. Journal of the iron and steel institute, 1953, 174: 25
2 Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747
doi: 10.1088/0370-1301/64/9/303
3 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in materials science, 2006, 51(4): 427
doi: 10.1016/j.pmatsci.2005.08.003
4 Gleiter H. Nanocrystalline Materials [M]. Advanced Structural and Functional Materials. Springer, Berlin, Heidelberg, 1991: 1
5 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197
doi: 10.1073/pnas.1324069111
6 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Materials Research Letters, 2014, 2(4): 185
doi: 10.1080/21663831.2014.935821
7 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587
doi: 10.1126/science.1200177 pmid: 21330487
8 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455
doi: 10.1126/science.1255940 pmid: 25237091
9 Zhu Y, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Materials Research Letters, 2021, 9(1): 1
doi: 10.1080/21663831.2020.1796836
10 Lu L, Wu X, Beyerlein I J. Preface to the viewpoint set on: Heterogeneous gradient and laminated materials [J]. Scripta Materialia, 2020, 187: 307
doi: 10.1016/j.scriptamat.2020.06.036
11 Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501
doi: 10.1073/pnas.1517193112
12 Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Materials Research Letters, 2019, 7(10): 393
doi: 10.1080/21663831.2019.1616331
13 Wang Y F, Huang C X, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu [J]. Scripta Materialia, 2019, 170: 76
doi: 10.1016/j.scriptamat.2019.05.036
14 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Materials Today, 2018, 21(7): 713
doi: 10.1016/j.mattod.2018.03.006
15 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239
doi: 10.1016/S0022-5096(98)00103-3
16 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues [J]. Scripta materialia, 2003, 48(2): 119
doi: 10.1016/S1359-6462(02)00335-4
17 Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of extruded Mg-alloy Mg-Al-Ca-Mn-Zn [J]. Chinese Journal of Materials Research, 2022, 36(1): 13
doi: 10.11901/1005.3093.2021.249
刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
18 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Progress in Materials Science, 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
19 Tian Y Z, Zhao L J, Park N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility [J]. Acta Materialia, 2016, 110: 61
doi: 10.1016/j.actamat.2016.03.015
20 Tian Y Z, Zhao L J, Chen S, et al. Significant contribution of stacking faults to the strain hardening behavior of Cu-15% Al alloy with different grain sizes [J]. Scientific reports, 2015, 5(1): 1
21 Liu Y, Xu K, Tu J, et al. Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy alloy [J]. Chinese Journal of Materials Research, 2020, 34(7): 535
doi: 10.11901/1005.3093.2019.557
刘 怡, 徐 康, 涂 坚 等. 高熵合金FeCoNiTi的微观组织演变和强韧化行为 [J]. 材料研究学报, 2020, 34(7): 535
22 Qiu J M, Xiao H, Wang J, et al. Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process [J]. Chinese Journal of Materials Research, 2015, 29(4): 277
doi: 10.11901/1005.3093.2014.542
邱集明, 肖 寒, 王 佳 等. 半固态ZCuSn10铜合金二次加热组织的演化 [J]. 材料研究学报, 2015, 29(4): 277
doi: 10.11901/1005.3093.2014.542
23 Wei K, Hu R, Yin D, et al. Grain size effect on tensile properties and slip systems of pure magnesium [J]. Acta Materialia, 2021, 206
24 Zhou X, Li X Y, Lu K. Strain hardening in gradient nano-grained Cu at 77  K [J]. Scripta Materialia, 2018, 153: 6
doi: 10.1016/j.scriptamat.2018.04.039
25 Lu L, Zhu T, Shen Y, et al. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper [J]. Acta Materialia, 2009, 57(17): 5165
doi: 10.1016/j.actamat.2009.07.018
26 Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys [J]. Scripta Materialia, 2009, 60(4): 211
doi: 10.1016/j.scriptamat.2008.10.005
27 Wang P, Guo A M, Hou Q Y, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel [J]. Chinese Journal of Materials Research, 2021, 35(3): 184
王 萍, 郭爱民, 侯清宇 等. 时效态Fe-Mn-Al-C钢的性能和变形机制 [J]. 材料研究学报, 2021, 35(3): 184
28 Chen A, Liu J, Wang H, et al. Gradient twinned 304 stainless steels for high strength and high ductility [J]. Materials Science and Engineering: A, 2016, 667: 179
doi: 10.1016/j.msea.2016.04.070
29 Huang M, Xu C, Fan G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Materialia, 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
30 Yang J, Xu L, Gao H, et al. Effect of global constraint on the mechanical behavior of gradient materials [J]. Materials Science and Engineering: A, 2021, 826
[1] Mingzhuan LI,Xiaoying HU,Min HE,Jie YU,Shengjun LU. Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites[J]. 材料研究学报, 2019, 33(4): 261-270.
[2] Qian ZHUO, Wenqing YANG, Changlin CAO, Rongguo CHEN, Qingrong QIAN, Qinghua CHEN. Toughening Modification of Acrylonitrile-butadiene Rubber/Ceric Sulfate Composites Crosslinked by Coordinate Bonds[J]. 材料研究学报, 2018, 32(2): 136-141.
[3] Wenbo BAO, Wei LI, Gaohao DI, Zhiqiang HUANG, Fang YU. Preparation and Ductility Characterization of an Environmental Friendly Toughening Cementitious Composite[J]. 材料研究学报, 2018, 32(12): 905-912.
[4] Zhengzhi ZHAO,Tingting TONG,Lan SU,Yan ZHANG. Mechanical Properties and Strengthen-toughening Mechanism of 1470 MPa Grade Dual-phase Steel[J]. 材料研究学报, 2014, 28(11): 828-834.
[5] HUANG Liwei FU Zhengyi MENG Fancheng ZHANG Jinyong. CNTs reinfoced alumina ceramics prepared by hot pressing technology with ultra-fast heating rate based on combustion reaction[J]. 材料研究学报, 2009, 23(1): 59-63.
[6] SONG Gmming;ZHOU Yu;SUN Yi;LEI Tingquan (Harbin Institute of Technology; Harbin 150001). MODELING OF CRACK PROMGATION BEHMIOR IN WHISKER REINFORCED CERAMIC COMPOSITES[J]. 材料研究学报, 1998, 12(1): 31-36.
[7] MAO Junbiao;CHEN Kai;CHEN Shaozhen;LIN Xiaolian (Department of Inorganic Materials; South China University of Technology;Guangzhou 510641). THE TRANSFORMED AMOUNT DURING FRACTURE TESTING AND MECHANICAL PROPERTIES OF Yb-Ce-TZP[J]. 材料研究学报, 1998, 12(1): 52-56.
[8] ZHU Xiaoguang;QI Zongneng (State Key Laboratory of Engineering Plastics; The Chinese Academy of Sciences). PROGRESS ON POLYMER TOUGHENING RESEARCH[J]. 材料研究学报, 1997, 11(6): 623-638.
[9] WANG Xiaodong; FENG Wei; LI Hangquan; JIN Riguang(Beijing University of Chemical Technology). STUDY ON THE IN-SITU COMPOSITE MECHANISM FOR TOUGHNING PP WITH UHMWPE[J]. 材料研究学报, 1996, 10(6): 645-650.
[10] WANG Rizhi; FENG Qingling; CUI Fuzhail LI Hengde(Tsinghua University). DEVELOPMENT OF BIOMIMETIC DESIGNED ALUMINA / FIBRE REINFORCED EPOXY LAMINATED COMPOSITE[J]. 材料研究学报, 1996, 10(1): 95-100.
[11] ZHANG Guojun; JIN Zongzhe (China Building Materials Academy). REACTION MECHANISMS, MECHANICAL PROPERTIES AND RESIDUAL STRESSES OF TiB_2-SiC COMPOSITES PRODUCED BY REACTIVE HOT PRESSING[J]. 材料研究学报, 1996, 10(1): 45-50.
[12] WANG Xiaodong; JIM Dong Gil; JIN Riguang (The State Key Laboratory of polymer Materials; Beijing University of Chemical Technology). EFFECTS OF COMPATIBILIZERS ON MORPHOLOGY AND TOUGHNESS OF NYLON 6/ETHYLENE-VINYL ACETATE COPOLYMER (EVA) BLENDS[J]. 材料研究学报, 1996, 10(1): 85-89.
[13] LIU Weiyue; WANG Hongiun(Tianjin University). THE WEAR CHARACTERISTICS OF ZTM CERAMICS[J]. 材料研究学报, 1995, 9(4): 345-350.
[14] HUANG Farong; ZHONG Xuejun; LIU Yujian; WANG Jinggang; ZHANG Xin (East China University of Science & Technology). PROPERITES AND THERMAL STABILITY OF A TOUGHENED BISMALEIMIDE RESIN[J]. 材料研究学报, 1994, 8(4): 356-361.
[15] HUANG Guanghui; CAO Niansun; SUN Peizhen ;QIAO Xueliang(Huazhong University of Science and Technology). ON THE CHARACTERISTICS OF STRENGTHENINGTOUGHENING IN A HIGH-STRENGTH HIGHTOUGHNESS LOW ALLOY COLD-WORKING DIE STEEL 6CrNiMnSiMoV[J]. 材料研究学报, 1994, 8(1): 29-34.
No Suggested Reading articles found!