|
|
Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides |
LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun( ) |
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
Cite this article:
LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides. Chinese Journal of Materials Research, 2023, 37(2): 95-101.
|
Abstract The two large surfaces of Cu-4.5%Al alloy sheet of 4mm in thickness was simultaneous sujected to mechanical grinding treatment at liquid nitrogen temperature for 2 min, then a Cu-Al alloy sandwich was acquired with two sides of gradient structure layer of ~250 μm in thickness, for which there should exist a negative gradient versus the distance to the alloy center in defect density of dislocations, faults, nano-twins etc. in the two surface layers. The evolution of shear bands of the sandwich alloy during tensile process was investigated by digital image correlation method. The results show that the locally concentrating of strain can be avoided by two-sided constrained gradient structure of the sandwich material, the uniform distribution of stress and strain may be beneficial to avoid the premature of plastic instability till the necking stage, in other word, a better work hardening ability can be maintained.
|
Received: 25 February 2022
|
|
Fund: National Natural Science Foundation of China(51664033);National Natural Science Foundation of China(51901091) |
About author: ZHU Xinkun, Tel: (0871)65109952, E-mail: xk_zhu@hotmail.com
|
1 |
Petch N J. The cleavage strength of polycrystals [J]. Journal of the iron and steel institute, 1953, 174: 25
|
2 |
Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747
doi: 10.1088/0370-1301/64/9/303
|
3 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in materials science, 2006, 51(4): 427
doi: 10.1016/j.pmatsci.2005.08.003
|
4 |
Gleiter H. Nanocrystalline Materials [M]. Advanced Structural and Functional Materials. Springer, Berlin, Heidelberg, 1991: 1
|
5 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197
doi: 10.1073/pnas.1324069111
|
6 |
Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Materials Research Letters, 2014, 2(4): 185
doi: 10.1080/21663831.2014.935821
|
7 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
8 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
9 |
Zhu Y, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Materials Research Letters, 2021, 9(1): 1
doi: 10.1080/21663831.2020.1796836
|
10 |
Lu L, Wu X, Beyerlein I J. Preface to the viewpoint set on: Heterogeneous gradient and laminated materials [J]. Scripta Materialia, 2020, 187: 307
doi: 10.1016/j.scriptamat.2020.06.036
|
11 |
Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501
doi: 10.1073/pnas.1517193112
|
12 |
Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Materials Research Letters, 2019, 7(10): 393
doi: 10.1080/21663831.2019.1616331
|
13 |
Wang Y F, Huang C X, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu [J]. Scripta Materialia, 2019, 170: 76
doi: 10.1016/j.scriptamat.2019.05.036
|
14 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Materials Today, 2018, 21(7): 713
doi: 10.1016/j.mattod.2018.03.006
|
15 |
Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239
doi: 10.1016/S0022-5096(98)00103-3
|
16 |
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues [J]. Scripta materialia, 2003, 48(2): 119
doi: 10.1016/S1359-6462(02)00335-4
|
17 |
Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of extruded Mg-alloy Mg-Al-Ca-Mn-Zn [J]. Chinese Journal of Materials Research, 2022, 36(1): 13
doi: 10.11901/1005.3093.2021.249
|
|
刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
|
18 |
An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Progress in Materials Science, 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
|
19 |
Tian Y Z, Zhao L J, Park N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility [J]. Acta Materialia, 2016, 110: 61
doi: 10.1016/j.actamat.2016.03.015
|
20 |
Tian Y Z, Zhao L J, Chen S, et al. Significant contribution of stacking faults to the strain hardening behavior of Cu-15% Al alloy with different grain sizes [J]. Scientific reports, 2015, 5(1): 1
|
21 |
Liu Y, Xu K, Tu J, et al. Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy alloy [J]. Chinese Journal of Materials Research, 2020, 34(7): 535
doi: 10.11901/1005.3093.2019.557
|
|
刘 怡, 徐 康, 涂 坚 等. 高熵合金FeCoNiTi的微观组织演变和强韧化行为 [J]. 材料研究学报, 2020, 34(7): 535
|
22 |
Qiu J M, Xiao H, Wang J, et al. Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process [J]. Chinese Journal of Materials Research, 2015, 29(4): 277
doi: 10.11901/1005.3093.2014.542
|
|
邱集明, 肖 寒, 王 佳 等. 半固态ZCuSn10铜合金二次加热组织的演化 [J]. 材料研究学报, 2015, 29(4): 277
doi: 10.11901/1005.3093.2014.542
|
23 |
Wei K, Hu R, Yin D, et al. Grain size effect on tensile properties and slip systems of pure magnesium [J]. Acta Materialia, 2021, 206
|
24 |
Zhou X, Li X Y, Lu K. Strain hardening in gradient nano-grained Cu at 77 K [J]. Scripta Materialia, 2018, 153: 6
doi: 10.1016/j.scriptamat.2018.04.039
|
25 |
Lu L, Zhu T, Shen Y, et al. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper [J]. Acta Materialia, 2009, 57(17): 5165
doi: 10.1016/j.actamat.2009.07.018
|
26 |
Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys [J]. Scripta Materialia, 2009, 60(4): 211
doi: 10.1016/j.scriptamat.2008.10.005
|
27 |
Wang P, Guo A M, Hou Q Y, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel [J]. Chinese Journal of Materials Research, 2021, 35(3): 184
|
|
王 萍, 郭爱民, 侯清宇 等. 时效态Fe-Mn-Al-C钢的性能和变形机制 [J]. 材料研究学报, 2021, 35(3): 184
|
28 |
Chen A, Liu J, Wang H, et al. Gradient twinned 304 stainless steels for high strength and high ductility [J]. Materials Science and Engineering: A, 2016, 667: 179
doi: 10.1016/j.msea.2016.04.070
|
29 |
Huang M, Xu C, Fan G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Materialia, 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
30 |
Yang J, Xu L, Gao H, et al. Effect of global constraint on the mechanical behavior of gradient materials [J]. Materials Science and Engineering: A, 2021, 826
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|