Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 371-380    DOI: 10.11901/1005.3093.2021.630
ARTICLES Current Issue | Archive | Adv Search |
Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures
ZHOU Zhangrui1, LV Peisen1, ZHAO Guoqi2, ZHANG Jian3, ZHAO Yunsong3, LIU Lirong1()
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
3.Science and Technology on Advanced High Temperature Structural Material Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures. Chinese Journal of Materials Research, 2023, 37(5): 371-380.

Download:  HTML  PDF(16863KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and deformation mechanism of two "replacement of Re by W" type low-cost second-generation nickel based single crystal superalloys after fracture at 982℃/248 MPa and 1070℃/137 MPa were investigated by SEM and TEM. The results show that the stress rupture properties of two alloys both reached the level of the second-generation single crystal superalloys; After fracture γ′ phases connected and combined to form "N-type" rafted structure, and the degree of γ′ phases distortion increased with the distance from the fracture. Under the same conditions, the raft degree of γ′ phases in 8.5W+1.0Re alloy was lower than that in 8.0W+1.5Re alloy; At 1070℃/137 MPa, the interfacial dislocation networks of the two alloys became denser; However, the dislocation networks of 8.0W+1.5Re alloy were denser than that of 8.5W+1.0Re alloy, a<010> superdislocations shearing into the γ′ phases were observed after fracture in 8.5W+1.0Re alloy under both conditions; The unstable fracture of the two alloys was mainly ascribed to a/2<110> dislocations in γ matrix shearing into the rafted γ′ phases, which intensify the deformation of rafted γ′ phases, and results in initiation and propagation of microcracks at the γ/γ′ interface, eventually leading to the fracture of the alloy; The interfacial dislocation networks and a<010> superdislocations could both improve the creep resistance of the two alloys.

Key words:  metallic materials      nickel based single crystal superalloy      stress rupture properties      deformation mechanism      rafted γ′ phases     
Received:  12 November 2021     
ZTFLH:  TG146.1  
Fund: Natural Science Foundation of Liaoning Province(2020-MS-212);Youth Science and Technology Growth Project of Guizhou Province([2022]121)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.630     OR     https://www.cjmr.org/EN/Y2023/V37/I5/371

AlloysCrWReCoAl+Ti+TaMoHfCNi
8.0W+1.5Re5.08.01.59.014.60.60.2100×10-6Bal.
8.5W+1.0Re5.08.51.09.014.60.60.2100×10-6Bal.
Table 1  Nominal composition of two single crystal superalloys (%, mass fraction)
Fig.1  Heat treatment process of two alloys
Fig.2  Schematic diagram of stress rupture specimen and its longitudinal section (a) schematic diagram of stress rupture specimen (b) schematic diagram of observation location in fractured sample
Fig.3  Microstructure of two alloys after full heat treatment (a) 8.0W+1.5Re alloy (b) 8.5W+1.0Re alloy
Alloys982℃/248 MPa1070℃/137 MPa
Stress rupture life / hElongation / %Stress rupture life / hElongation / %
8.0W+1.5Re2592824143
8.5W+1.0Re2513120745
Table 2  Data of stress rupture properties of two alloys under different conditions
Fig.4  Microstructures in different regions of specimens in two alloys after fracture at 982℃/248 MPa
Fig. 5  Microstructures in different regions of specimens in two alloys after fracture at 1070℃/137 MPa
AlloysAngles between stress axis and rafted γ′ phases / (°)
Location 1Location 2Location 3
8.0W+1.5Re103.4 (φ1)117.5 (φ2)128.7 (φ3)
8.5W+1.0Re101.6 (φ4)112.3 (φ5)124.6 (φ6)
Table 3  Statistical data results of the angles between the stress axis and the rafted γ' phase after fracture at 1070℃/137 MPa
Fig.6  Dislocation configuration of alloys after fracture at 982℃/248 MPa and 1070℃/137 MPa (a) (b) 982℃/248 MPa (c)(d) 1070℃/137 MPa (a) (c) 8.5W+1.0Re alloy (b) (d) 8.0W+1.5Re alloy
Fig.7  Schematic diagram of stress rupture deformation mechanism at 982℃/248 MPa and 1070℃/137 MPa (a) (b) 982℃/248 MPa (c) (d) 1070℃/137 MPa (a) (c) the movement of dislocations in γ' matrix (b) (d) dislocations distribution in γ' phase
Fig.8  Schematic diagram of interfacial dislocation networks configuration and morphology evolution (a) octagonal dislocation networks (b) hexagonal dislocation networks (c) hexagonal dislocation networks of 8.0W+1.5Re alloy at 1070℃/137 MPa
AlloysDislocation spacing / nm
982oC/248 MPa1070oC/137 MPa
8.0W+1.5Re10036
8.5W+1.0Re14045
Table 4  Dislocation networks spacing of two alloys after fracture under different conditions
Fig.9  Schematic diagram of a<010> superdislocation formation (a) Two a/2<112> dislocations reaction to obtain a<010> superdislocation (b) Two a/2<110> dislocations reaction to obtain a<010> superdislocation
Alloys982℃ / 248 MPa1070℃ / 137 MPa
τAPB / MPaτor / MPaτAPB / MPaτor / MPa
8.0W+1.5Re94.07194.8561.35102.87
8.5W+1.0Re91.86241.7564.63133.65
Table 5  Calculated data of critical resolved shear stresses for different deformation mechanisms of two alloys under different conditions
1 Shang Z, Wei X P, Song D Z, et al. Microstructure and mechanical properties of a new nickel-based single crystal superalloy [J]. J. Mater. Res. Technol., 2020, 9(5): 11641
doi: 10.1016/j.jmrt.2020.08.032
2 Nowotnik A, Kubiak K, Sieniawski J, et al. Development of nickel based superalloys for advanced turbine engines [J]. Mater. Sci. Forum, 2014, 3129: 2491
3 Dong Z G, Wang M, Li X X, et al. Application and progress of materials for turbine blade of aeroengine [J]. J. Iron Steel Res., 2011, (suppl.) : 455
董志国, 王 鸣, 李晓欣 等. 航空发动机涡轮叶片材料的应用与发展 [J]. 钢铁研究学报, 2011, (): 455
4 Liu G, Liu L, Zhao X B, et al. Influence of refractory elements addition on solidification characteristics and microstructure of Ni-based single-crystal superalloys [J]. Mater. Rep., 2008, 22(9): 38
刘 刚, 刘 林, 赵新宝 等. 难熔元素对镍基单晶高温合金凝固特性及组织的影响 [J]. 材料导报, 2008, 22(9): 38
5 Acharya A, Fuchs G E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys [J]. Mater. Sci. Eng. A, 2004, 381: 143
doi: 10.1016/j.msea.2004.04.001
6 Long H B, Mao S C, Liu Y N, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy [J]. Acta Mater., 2020, 185: 233
doi: 10.1016/j.actamat.2019.12.014
7 Fleischmann E, Miller M K, Affeldt E, et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys [J]. Acta Mater., 2015, 87: 350
doi: 10.1016/j.actamat.2014.12.011
8 Razumovskii I M, Ruban A V, Razumovskiy V I, et al. New generation of Ni-based superalloys designed on the basis of first-principles calculations [J]. Mater. Sci. Eng. A, 2008, 497: 18
doi: 10.1016/j.msea.2008.08.013
9 Shmotin Y, Logunov A, Egorov I, et al. Computer simulation and optimization of chemical compositions of heat-resistant nickel superalloys [A]. PRICM: 8th Pacific Rim International Congress on Advanced Materials and Processing [C]. New York: John Wiley & Sons, Ltd, 2013: 2799
10 Shmotin Y, Logunov A, Danilov D, et al. Development of economically doped heat-resistant nickel single-crystal superalloys for blades of perspective gas turbine engines [A]. PRICM: 8th Pacific Rim International Congress on Advanced Materials and Processing [C]. New York: John Wiley & Sons, Ltd, 2013: 327
11 Shi Z X, Liu S Z, Wang X G, et al. Effect of solution cooling method on the microstructure and stress rupture properties of a single crystal superalloy [J]. Mater. Sci. Forum, 2015, 816: 513
doi: 10.4028/www.scientific.net/MSF.816
12 Heckl A, Neumeier S, Goken M, et al. The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys [J]. Mater. Sci. Eng. A, 2011, 528(9): 3435
doi: 10.1016/j.msea.2011.01.023
13 Carroll L J, Feng Q, Pollock T M. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys [J]. Metall. Mater. Trans. A, 2008, 39(6): 1290
doi: 10.1007/s11661-008-9520-7
14 Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Mater., 2005, 53(17): 4623
doi: 10.1016/j.actamat.2005.06.013
15 Link T, Epishin A, Klaus M, et al. <100> Dislocations in nickel-base superalloys: Formation and role in creep deformation [J]. Mater. Sci. Eng. A, 2005, 405: 254
doi: 10.1016/j.msea.2005.06.001
16 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 89
郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 89
17 Wukusick C S, Buchakjian L. Property-balanced nickel-base superalloys for producing single crystal articles [P]. US Pat, 6074602, 2000.
18 Karunaratne M S A, Cox D C, Carter P, et al. Modeling of the microsegregation in CMSX-4 superalloy and its homogenization during heat treatment [C]. Superalloys 2000, Warrendale: TMS, 2000, 263
19 Wang G L. Coarsening kinetics of cubic γ′ precipitates during thermal exposure and stress rupture mechanical behavior of DD5 single crystal superalloy [D]. Shenyang: Northeastern University, 2015
王广磊. DD5单晶高温合金的长期时效和持久性能研究 [D]. 沈阳: 东北大学, 2015
20 Tan Z H. Study on microstructure and properties of a novel low-cost nickel-based single crystal superalloy [D]. Shenyang: Shenyang University of Technology, 2020
谭子昊. 一种新型低成本镍基单晶高温合金微观组织与性能研究 [D]. 沈阳: 沈阳工业大学, 2020
21 Zhang J X, Murakumo T, Koizumi Y, et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
doi: 10.1016/S1359-6454(03)00355-0
22 Field R D, Pollock T M, Murphy W H. The development of γ/γ′ interfacial dislocation networks during creep in Ni-base superalloys [A]. Superalloys 1992 [C]. Warrendale: The Minerals, Materials and Metals Society, 1992, 557
23 Boualy O, Clément N, Benyoucef M. Analysis of dislocation networks in crept single crystal nickel-base superalloy [J]. J. Mater. Sci., 2018, 53(4): 2892
doi: 10.1007/s10853-017-1699-9
24 Link T, Epishin A, Klaus M, et al. <100> Dislocations in nickel-based superalloys: Formation and role in creep deformation [J]. Mater. Sci. Eng. A, 2005, 405: 254
doi: 10.1016/j.msea.2005.06.001
25 Wang X G, Liu J L, Jin T, et al. Creep deformation related to dislocations cutting the gamma' phase of a Ni-based single crystal superalloy [J]. Mater. Sci. Eng. A, 2015, 626: 406
doi: 10.1016/j.msea.2014.12.060
26 Yue Q Z, Liu L, Yang W C, et al. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 752
doi: 10.1016/j.jmst.2018.11.015
27 Cui L Q, Yu J J, Liu J L, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy [J]. Mater. Sci. Eng. A, 2018, 710: 309
doi: 10.1016/j.msea.2017.11.002
28 Zhang J X, Murakumo T, Harada H, et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138 [J]. Scr. Mater., 2003, 48(3): 287
doi: 10.1016/S1359-6462(02)00379-2
29 Tian S G, Su Y, Qian B J. et al. Creep behavior of a single crystal nickel-based superalloy containing 4.2%Re [J]. Mater. Des., 2012, 37(1): 236
doi: 10.1016/j.matdes.2012.01.008
30 Xu K, Wang G L, Liu J D, et al. Creep behavior and a deformation mechanism based creep rate model under high temperature and low stress condition for single crystal superalloy DD5 [J]. Mater. Sci. Eng. A, 2020, 786: 139414
doi: 10.1016/j.msea.2020.139414
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!