|
|
Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible |
WANG Guotian1( ), LONG Zekun2, WU Biao1, WANG Qiang1, DING Hongsheng2 |
1.School of Automobil and Traffic Engineering, Heilongjiang Institute of Technology, Harbin 150050, China 2.National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
WANG Guotian, LONG Zekun, WU Biao, WANG Qiang, DING Hongsheng. Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible. Chinese Journal of Materials Research, 2022, 36(9): 706-714.
|
Abstract Referring to the simulation results, the effects of pulse current with different parameters on the solidification structure and properties of directionally solidified Ti-45.5Al-4Cr-2.5Nb (%, atom fraction) alloy were investigated. The results show that when the pulse current frequency is 200 Hz, due to the skin effect of current and Joule heat effect of current the surface current of melt is biased and the lateral heat dissipation decreases, the average deviation angle of dendrite decreases, and the elongation increases with the decrease of deviation angle. When the density of pulse current is small, the average width of grains decreases with the increase of current density due to Joule heat effect of current and electromagnetic stirring which promote the remelting or breaking of dendrites. However, when the current density reaches a certain value, the melting zone grows up and the temperature gradient decreases. On the contrary, the average width of grains increases and the tensile strength of TiAl alloy first increases with the increase of current density, and then decreases; Compared with the master alloy ingot, the tensile strength and elongation of TiAl alloy increased by 70.7% and 129.5% respectively.
|
Received: 31 August 2021
|
|
Fund: Doctor Foundation Project of Heilongjiang Institute of Technology(2019BJ03);Basic Scientific Research Business Fee (Innovation Team Category) Project of Heilongjiang Institute of Technology(2020CX02);Basic Scientific Research Business Fee (Innovation Team Category) Project of Heilongjiang Institute of Technology(2018CX07);Provincial Leading Talent Echelon Cultivation Program(2020LJ04);Heilongjiang Natural Science Foundation(LH2019E114) |
About author: WANG Guotian, Tel: 13836023153, E-mail: guotianw@139.com
|
1 |
Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials [J]. Materials Science and Engineering: A, 1999, 263(2): 281
doi: 10.1016/S0921-5093(98)01158-7
|
2 |
Appel F, Brossmann U, Christoph U. Recent progress in the development of gamma titanium aluminide alloys [J]. Advanced Engineering Materials, 2000, 2(11): 699
doi: 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
|
3 |
Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys [M]. Germany: Wiley-VCH Verlag & Co. KGaA, Boschstr. Weinheim, Springer, 2011: 1
|
4 |
Wu X. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14(10):1114
doi: 10.1016/j.intermet.2005.10.019
|
5 |
Kim Y W. Ordered intermetallic alloys, part III: gamma titanium aluminides [J]. JOM, 1994, 46(7): 30
|
6 |
Shigeo A. Recent development and prospect of electromagnetic processing of materials [J]. Sci. Technol. Adv. Mater., 2000, 1(4): 191
doi: 10.1016/S1468-6996(00)00016-4
|
7 |
Asai S. Electromagnetic Processing of Materials [M]. Springer Netherlands, 2012: 87
|
8 |
Wang R Z, Qi J G, Wang B, et al. Solidification behavior and crystal growth mechanism of aluminum under electric pulse [J]. J. Mater. Process. Technol., 2016, 237: 235
doi: 10.1016/j.jmatprotec.2016.06.016
|
9 |
Chen Z X, Ding H S, Chen R R, et al. An innovative method for the microstructural modification of TiAl alloy solidified via direct electric current application [J]. J. Mater. Sci. Technol., 2019, 35(1): 23
doi: 10.1016/j.jmst.2018.06.016
|
10 |
Li J, Ma J H, Song C J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse [J]. J. Iron Steel Res. Int., 2009, 16(6): 7
|
11 |
Conrad Hans. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid [J]. Materials Science and Engineering, 2000: 205
|
12 |
Chen Q F, Wang J Z. Macrostructures and shape memory effect of cast- state electropulse modified Cu-Al-Ni alloys [J]. Materials Science & Technology, 2001, 9(3): 240
|
|
陈庆福, 王建中. 电脉冲孕育细化CuAlNi合金的宏观组织与铸态形状记忆效应 [J]. 材料科学与工艺, 2001, 9(3): 240
|
13 |
He S X, Wang J, Zhou Y H. Effect of high density pulse electric current on the solidification structure of low temperature melt of A356 aluminium alloy [J]. Acta Metall. Sin., 2002, 38(5): 479
|
|
何树先, 王 俊, 周尧和. 高密度脉冲电流对A356铝合金低温熔体凝固组织的影响 [J]. 金属学报, 2002, 38(5): 479
|
14 |
Masayuki, Nakada, Shiohara Yuh, et al. Modification of solidification structures by pulse electric discharging [J]. ISIJ International, 1990, 30(1): 27
doi: 10.2355/isijinternational.30.27
|
15 |
Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Materialia, 2007, 55(9): 3103
doi: 10.1016/j.actamat.2007.01.014
|
16 |
Li X B, Lu F G, Cui H C, et al. Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 192
doi: 10.1016/S1003-6326(14)63047-8
|
17 |
Barnak J P, Sprecher A F, Conrad H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing [J]. Scripta metallurgica et materialia, 1995, 32(6): 879
doi: 10.1016/0956-716X(95)93218-S
|
18 |
Nakada M, Shiohara Y, Flemings M C. Modification of solidification structures by pulse electric discharging [J]. ISIJ international, 1990, 30(1): 27
doi: 10.2355/isijinternational.30.27
|
19 |
Misra A K. Effect of electric potentials on solidification of near eutectic Pb-Sb-Sn alloy [J]. Materials Letters, 1986, 4(3): 176
doi: 10.1016/0167-577X(86)90011-X
|
20 |
Liao X L, Zhai Q J, Song C J. Effects of electric current pulse on stability of solid/liquid interface of Al-4.5% Cu alloy during directional solidification [J]. Materials Science and Engineering: A, 2007, 466(1): 56
doi: 10.1016/j.msea.2007.02.022
|
21 |
Räbiger D, Zhang Y H, Galindo V. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents [J]. Acta Materialia, 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
|
22 |
Vashchenko K I, Chernega D F, Vorobev S L. Effect of electric current on the solidification of cast iron [J]. Metal Science and Heat Treatment, 1974, 16(3): 261
doi: 10.1007/BF00663070
|
23 |
Feng X H, Yang Y S, Li Y J, et al. Effect of DC field on mechanical property of a Ni-based single crystal superalloy [J]. Acta Metall. Sin., 2006, 42(9): 947
|
|
冯晓辉, 杨院生, 李应举 等. 直流电流对一种镍基单晶高温合金力学性能的影响 [J]. 金属学报, 2006, 42(9): 947
|
24 |
Jiang H X, Zhao J Z, Wang C P. Effect of electric current pulses on solidification of immiscible alloys [J]. Materials Letters, 2014, 132: 66
doi: 10.1016/j.matlet.2014.06.017
|
25 |
Tang Y F, Qiu S, Miao Q, et al. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields [J]. J. Eur. Ceram. Soc., 2016: 36, 1233
doi: 10.1016/j.jeurceramsoc.2015.12.012
|
26 |
Li C S, Hu S D, Ren Z M, et al. Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum, J. Mater. Sci. Technol., 2018, 34: 2431
|
27 |
Li J Y, Ni P, Wang L, et al. Influence of direct electric current on solidification process of Al-Si alloy [J]. Mater. Sci. Semicon. Proc., 2017, 61: 79
doi: 10.1016/j.mssp.2016.12.034
|
28 |
Yang J R, Chen R R, Guo J J, et al. Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification [J]. Int. J. Heat Mass Tran., 2016, 100: 131
doi: 10.1016/j.ijheatmasstransfer.2016.04.030
|
29 |
Yang J R, Chen R R, Su Y Q, et al. Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy [J]. Energy, 2018, 161(15): 143
doi: 10.1016/j.energy.2018.07.076
|
30 |
Erdely P, Staron P, Maawad E, et al. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy [J]. Mater. Des. 2017, 131(5): 286
doi: 10.1016/j.matdes.2017.06.030
|
31 |
Wang G T, Ding H S, Chen R R, et al. Intermetallics prepared by directional solidification electromagnetic cold crucible technique [J]. Acta Metall. Sin., 2017, 53(11): 1461
|
|
王国田, 丁宏升, 陈瑞润 等. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响 [J]. 金属学报, 2017, 53(11): 1461
|
32 |
Zhang T B, Wu Z E, Hu R, et al. Influence of nitrogen on the microstructure and solidification behavior of high Nb containing TiAl alloys [J]. Mater. Des. 2016, 103(5): 100
doi: 10.1016/j.matdes.2016.04.071
|
33 |
Gao M, He G H, Yang F. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy [J]. Mater. Sci. Eng, 2002, (337): 110
|
34 |
Inui H, Oh M H, Nakamura A. Room temperature tensile deformation of polysynthecally twinned (PST) crystals of TiAl [J]. Acta Metall Mater, 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
|
35 |
Guo J J, Wang G T, Meng F Y. Microstructure and properties of Ti-(43-48)Al-2Cr-2Nb alloy prepared by directional solidification [J]. Chinese Journal of Materials Research, 2020, 34(7): 554
doi: 10.11901/1005.3093.2020.028
|
|
郭俊杰, 王国田, 孟凡英. 定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能 [J]. 材料研究学报, 2020, 34(7): 554
doi: 10.11901/1005.3093.2020.028
|
36 |
Witusiewicz V T, Bondar A A, Hecht U. Thermodynamic re-modelling of theternary Al-Cr-Ti system with refined Al-Cr description [J]. Journal of Alloys and Compounds, 2015, 644: 939
doi: 10.1016/j.jallcom.2015.04.231
|
37 |
Zhen L, Shao W Z, Yang D Z. Microscopic Theory of Strength and Fracture of Crystal Materials [M]. Beijing: Science Press, 2018: 5
|
|
甄 良, 邵文柱, 杨德庄. 晶体材料强度与断裂的微观理论 [M]. 北京: 科学出版社, 2018: 5
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|