Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 706-714    DOI: 10.11901/1005.3093.2021.496
ARTICLES Current Issue | Archive | Adv Search |
Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible
WANG Guotian1(), LONG Zekun2, WU Biao1, WANG Qiang1, DING Hongsheng2
1.School of Automobil and Traffic Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
2.National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

WANG Guotian, LONG Zekun, WU Biao, WANG Qiang, DING Hongsheng. Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible. Chinese Journal of Materials Research, 2022, 36(9): 706-714.

Download:  HTML  PDF(13187KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Referring to the simulation results, the effects of pulse current with different parameters on the solidification structure and properties of directionally solidified Ti-45.5Al-4Cr-2.5Nb (%, atom fraction) alloy were investigated. The results show that when the pulse current frequency is 200 Hz, due to the skin effect of current and Joule heat effect of current the surface current of melt is biased and the lateral heat dissipation decreases, the average deviation angle of dendrite decreases, and the elongation increases with the decrease of deviation angle. When the density of pulse current is small, the average width of grains decreases with the increase of current density due to Joule heat effect of current and electromagnetic stirring which promote the remelting or breaking of dendrites. However, when the current density reaches a certain value, the melting zone grows up and the temperature gradient decreases. On the contrary, the average width of grains increases and the tensile strength of TiAl alloy first increases with the increase of current density, and then decreases; Compared with the master alloy ingot, the tensile strength and elongation of TiAl alloy increased by 70.7% and 129.5% respectively.

Key words:  metallic materials      pluse current      TiAl alloy      directional solidification      microstructure      mechanical property     
Received:  31 August 2021     
ZTFLH:  TG244.3  
Fund: Doctor Foundation Project of Heilongjiang Institute of Technology(2019BJ03);Basic Scientific Research Business Fee (Innovation Team Category) Project of Heilongjiang Institute of Technology(2020CX02);Basic Scientific Research Business Fee (Innovation Team Category) Project of Heilongjiang Institute of Technology(2018CX07);Provincial Leading Talent Echelon Cultivation Program(2020LJ04);Heilongjiang Natural Science Foundation(LH2019E114)
About author:  WANG Guotian, Tel: 13836023153, E-mail: guotianw@139.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.496     OR     https://www.cjmr.org/EN/Y2022/V36/I9/706

Fig.1  Schematic diagram of loading pulse current in continuous solidification process
Fig.2  Temperature field distribution of TiAl based alloy during solidification under different pulse current (a) 0 mA/mm2; (b) 17.6 mA/mm2; (c) 35.3 mA/mm2; (d) 52.9 mA/mm2

Current density

/mA·mm-2

Radial temperature difference of melt/℃
046.5
17.631.4
35.325.3
52.917.9
Table 1  Radial temperature difference of melt under different pulse current
Fig.3  Radial temperature distribution of TiAl based alloy under different pulse current
Fig.4  Longitudinal section macrostructures of 45.5Al-4Cr-2.5Nb alloy with different pulse current (a) 0 mA/mm2; (b) 17.6 mA/mm2; (c) 35.3 mA/mm2; (d) 52.9 mA/mm2
Fig.5  Average deviation angle of grains with different pulse current
Current density/mA·mm-2Average deviation angle of grains / (°)
030.2
17.621.5
35.318.6
52.917.0
Table 2  Average deviation angle of grains with different pulse current
Fig.6  OM images of directional solidified TiAl with different pulse current (a) 0 mA/mm2; (b) 17.6 mA/mm2; (c) 35.3 mA/mm2; (d) 52.9 mA/mm2
Fig.7  XRD spectra of directional solidification region of TiAl alloys at different current intensities
Current density/mA·mm-2Average grain width/μm
0850.67
17.6728.16
35.3685.93
52.9776.32
Table 3  Average grain width of samples with different pulse current
Fig.8  Effect of different pulse current on lamellar orientation of TiAl based alloy (a) 0 mA/mm2; (b) 17.6 mA/mm2; (c) 35.3 mA/mm2; (d) 52.9 mA/mm2
Fig.9  Proportion of lamellar area with lamellar angle less than 45° with different pulse current
Fig.10  SEM images of directionally solidified TiAl at current intensities (a) 0 mA/mm2; (b) 17.6 mA/mm2; (c) 35.3 mA/mm2; (d) 52.9 mA/mm2
SampleAnalysis locationTiAlCrNb
0 mA/mm2145.8748.882.582.67
251.8035.0710.22.93
17.6 mA/mm2148.3746.162.712.76
249.6937.1610.272.88
35.3 mA/mm2147.4946.742.822.95
251.5435.859.513.10
52.9 mA/mm2146.2147.712.923.16
252.2635.259.473.02
Table 4  EDS analysis of TiAl based alloy with different pulse current
Fig.11  Tensile curves of TiAl based alloy with different pulse current
SampleTensile strength/MPaElongation/%
Master alloy260.60.122
0 mA/mm2264.30.153
17.6 mA/mm2304.70.186
35.3 mA/mm2404.10.217
52.9 mA/mm2322.70.289
Table 5  Ttensile properties of TiAl based alloy under different pulse current
1 Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials [J]. Materials Science and Engineering: A, 1999, 263(2): 281
doi: 10.1016/S0921-5093(98)01158-7
2 Appel F, Brossmann U, Christoph U. Recent progress in the development of gamma titanium aluminide alloys [J]. Advanced Engineering Materials, 2000, 2(11): 699
doi: 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
3 Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys [M]. Germany: Wiley-VCH Verlag & Co. KGaA, Boschstr. Weinheim, Springer, 2011: 1
4 Wu X. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14(10):1114
doi: 10.1016/j.intermet.2005.10.019
5 Kim Y W. Ordered intermetallic alloys, part III: gamma titanium aluminides [J]. JOM, 1994, 46(7): 30
6 Shigeo A. Recent development and prospect of electromagnetic processing of materials [J]. Sci. Technol. Adv. Mater., 2000, 1(4): 191
doi: 10.1016/S1468-6996(00)00016-4
7 Asai S. Electromagnetic Processing of Materials [M]. Springer Netherlands, 2012: 87
8 Wang R Z, Qi J G, Wang B, et al. Solidification behavior and crystal growth mechanism of aluminum under electric pulse [J]. J. Mater. Process. Technol., 2016, 237: 235
doi: 10.1016/j.jmatprotec.2016.06.016
9 Chen Z X, Ding H S, Chen R R, et al. An innovative method for the microstructural modification of TiAl alloy solidified via direct electric current application [J]. J. Mater. Sci. Technol., 2019, 35(1): 23
doi: 10.1016/j.jmst.2018.06.016
10 Li J, Ma J H, Song C J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse [J]. J. Iron Steel Res. Int., 2009, 16(6): 7
11 Conrad Hans. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid [J]. Materials Science and Engineering, 2000: 205
12 Chen Q F, Wang J Z. Macrostructures and shape memory effect of cast- state electropulse modified Cu-Al-Ni alloys [J]. Materials Science & Technology, 2001, 9(3): 240
陈庆福, 王建中. 电脉冲孕育细化CuAlNi合金的宏观组织与铸态形状记忆效应 [J]. 材料科学与工艺, 2001, 9(3): 240
13 He S X, Wang J, Zhou Y H. Effect of high density pulse electric current on the solidification structure of low temperature melt of A356 aluminium alloy [J]. Acta Metall. Sin., 2002, 38(5): 479
何树先, 王 俊, 周尧和. 高密度脉冲电流对A356铝合金低温熔体凝固组织的影响 [J]. 金属学报, 2002, 38(5): 479
14 Masayuki, Nakada, Shiohara Yuh, et al. Modification of solidification structures by pulse electric discharging [J]. ISIJ International, 1990, 30(1): 27
doi: 10.2355/isijinternational.30.27
15 Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Materialia, 2007, 55(9): 3103
doi: 10.1016/j.actamat.2007.01.014
16 Li X B, Lu F G, Cui H C, et al. Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 192
doi: 10.1016/S1003-6326(14)63047-8
17 Barnak J P, Sprecher A F, Conrad H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing [J]. Scripta metallurgica et materialia, 1995, 32(6): 879
doi: 10.1016/0956-716X(95)93218-S
18 Nakada M, Shiohara Y, Flemings M C. Modification of solidification structures by pulse electric discharging [J]. ISIJ international, 1990, 30(1): 27
doi: 10.2355/isijinternational.30.27
19 Misra A K. Effect of electric potentials on solidification of near eutectic Pb-Sb-Sn alloy [J]. Materials Letters, 1986, 4(3): 176
doi: 10.1016/0167-577X(86)90011-X
20 Liao X L, Zhai Q J, Song C J. Effects of electric current pulse on stability of solid/liquid interface of Al-4.5% Cu alloy during directional solidification [J]. Materials Science and Engineering: A, 2007, 466(1): 56
doi: 10.1016/j.msea.2007.02.022
21 Räbiger D, Zhang Y H, Galindo V. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents [J]. Acta Materialia, 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
22 Vashchenko K I, Chernega D F, Vorobev S L. Effect of electric current on the solidification of cast iron [J]. Metal Science and Heat Treatment, 1974, 16(3): 261
doi: 10.1007/BF00663070
23 Feng X H, Yang Y S, Li Y J, et al. Effect of DC field on mechanical property of a Ni-based single crystal superalloy [J]. Acta Metall. Sin., 2006, 42(9): 947
冯晓辉, 杨院生, 李应举 等. 直流电流对一种镍基单晶高温合金力学性能的影响 [J]. 金属学报, 2006, 42(9): 947
24 Jiang H X, Zhao J Z, Wang C P. Effect of electric current pulses on solidification of immiscible alloys [J]. Materials Letters, 2014, 132: 66
doi: 10.1016/j.matlet.2014.06.017
25 Tang Y F, Qiu S, Miao Q, et al. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields [J]. J. Eur. Ceram. Soc., 2016: 36, 1233
doi: 10.1016/j.jeurceramsoc.2015.12.012
26 Li C S, Hu S D, Ren Z M, et al. Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum, J. Mater. Sci. Technol., 2018, 34: 2431
27 Li J Y, Ni P, Wang L, et al. Influence of direct electric current on solidification process of Al-Si alloy [J]. Mater. Sci. Semicon. Proc., 2017, 61: 79
doi: 10.1016/j.mssp.2016.12.034
28 Yang J R, Chen R R, Guo J J, et al. Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification [J]. Int. J. Heat Mass Tran., 2016, 100: 131
doi: 10.1016/j.ijheatmasstransfer.2016.04.030
29 Yang J R, Chen R R, Su Y Q, et al. Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy [J]. Energy, 2018, 161(15): 143
doi: 10.1016/j.energy.2018.07.076
30 Erdely P, Staron P, Maawad E, et al. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy [J]. Mater. Des. 2017, 131(5): 286
doi: 10.1016/j.matdes.2017.06.030
31 Wang G T, Ding H S, Chen R R, et al. Intermetallics prepared by directional solidification electromagnetic cold crucible technique [J]. Acta Metall. Sin., 2017, 53(11): 1461
王国田, 丁宏升, 陈瑞润 等. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响 [J]. 金属学报, 2017, 53(11): 1461
32 Zhang T B, Wu Z E, Hu R, et al. Influence of nitrogen on the microstructure and solidification behavior of high Nb containing TiAl alloys [J]. Mater. Des. 2016, 103(5): 100
doi: 10.1016/j.matdes.2016.04.071
33 Gao M, He G H, Yang F. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy [J]. Mater. Sci. Eng, 2002, (337): 110
34 Inui H, Oh M H, Nakamura A. Room temperature tensile deformation of polysynthecally twinned (PST) crystals of TiAl [J]. Acta Metall Mater, 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
35 Guo J J, Wang G T, Meng F Y. Microstructure and properties of Ti-(43-48)Al-2Cr-2Nb alloy prepared by directional solidification [J]. Chinese Journal of Materials Research, 2020, 34(7): 554
doi: 10.11901/1005.3093.2020.028
郭俊杰, 王国田, 孟凡英. 定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能 [J]. 材料研究学报, 2020, 34(7): 554
doi: 10.11901/1005.3093.2020.028
36 Witusiewicz V T, Bondar A A, Hecht U. Thermodynamic re-modelling of theternary Al-Cr-Ti system with refined Al-Cr description [J]. Journal of Alloys and Compounds, 2015, 644: 939
doi: 10.1016/j.jallcom.2015.04.231
37 Zhen L, Shao W Z, Yang D Z. Microscopic Theory of Strength and Fracture of Crystal Materials [M]. Beijing: Science Press, 2018: 5
甄 良, 邵文柱, 杨德庄. 晶体材料强度与断裂的微观理论 [M]. 北京: 科学出版社, 2018: 5
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!