Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 715-720    DOI: 10.11901/1005.3093.2021.145
ARTICLES Current Issue | Archive | Adv Search |
Effect of Stacking Sequences on Bonding Performance of CFRP-Al Single-lap Joint
ZOU Tianchun, JU Yuezhang(), LI Longhui, FU Ji
College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
Cite this article: 

ZOU Tianchun, JU Yuezhang, LI Longhui, FU Ji. Effect of Stacking Sequences on Bonding Performance of CFRP-Al Single-lap Joint. Chinese Journal of Materials Research, 2022, 36(9): 715-720.

Download:  HTML  PDF(11534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laminated plates of carbon fiber reinforce plastic (CFRP) with different stacking sequences, namely [45/-45]4s, [0/90]4s and [0/45/-45/90]2s were produced via autoclave.They were glue-jointed with Al-plate to prepare single-lap joint samples at room temperature. The single-lap joint performance of the prepared samples was assessed by means of universal testing machine, digital image correlation (DIC) and scanning electron microscope (SEM) in terms of load-displacement curves, strain field distribution and fracture appearance of adhesive joints. On this basis, the mechanical properties of CFRP-Al single-lap joints were analyzed, the influence of different stacking sequences on the bonding performance of CFRP-Al single-lap joints, while the failure mechanism of adhesive joints were revealed. The results show that during the tensile process, the sample with [45/-45]4s presents a plastic deformation stage and its tensile displacement is the largest; while the tensile displacements of samples with [0/45/-45/90]2s and [0/90]4s are less, and they present brittle fracture. In general, the ultimate load of the sample and the number of fiber bundles fracture increase for samples in the following order, namely samples with [45/-45]4s, [0/45/-45/90]2s and [0/90]4s, but their interlaminar shear force, the strain field concentration degree and the delamination damage degree gradually decrease.

Key words:  composite      stacking sequences      bonding of dissimilar materials      strain field distribution      fracture appearance     
Received:  21 February 2021     
ZTFLH:  TB33  
About author:  JU Yuezhang, Tel: 13161231877, E-mail: juyuezhang1@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.145     OR     https://www.cjmr.org/EN/Y2022/V36/I9/715

Fig.1  Single-lap joint of CFRP-Al
Fig.2  Schematic diagram of adhesive layer thickness control
Fig.3  Production process of CFRP Laminates
PropertyE11/MPaE22/MPaE33/MPaG12/MPaG13/MPaG23/MPaνDensity, ρ/kg·m-3
Value121000860086003450345028000.3011467
Table 1  Material properties of CFRP laminates
Properties

Young′s modulus,

E/MPa

Poisson′s ratio, ν

Density, ρ

/kg·m-3

Value717000.323000
Table 2  Properties of Al7075
Fig.4  Testing equipment
Fig.5  Load-displacement curve of different stacking sequences
Fig.6  Strain field in front x direction of single-lap joint with different stacking sequences (a) [45/-45]4s, (b) [0/45/-45/90]2s, (c) [0/90]4s
Fig.7  Typical failure mode of single lap joints with different stacking sequences (a) [45/-45]4s, (b) [0/45/-45/90]2s, (c) [0/90]4s
Fig.8  SEM images of angle between fiber layers before and after tensile tests of [45/-45]4s (a) before tensile tests, (b) after tensile tests
Fig.9  SEM images of failure modes of single lap joints with different stacking sequences (a) [45/-45]4s, (b) [0/45/-45/90]2s, (c) [0/90]4s
1 Ning L, Yang S C, Leng Y, et al. Overview of the application of advance composite materials on aircraft and the development of its manufacturing technology [J]. Compos. Sci. Eng., 2020, (5): 123
宁 莉, 杨绍昌, 冷 悦 等. 先进复合材料在飞机上的应用及其制造技术发展概述 [J]. 复合材料科学与工程, 2020, (5): 123
2 Kitano A. Characteristics of carbon-fiber-reinforced plastics (CFRP) and associated challenges—focusing on carbon-fiber-reinforced thermosetting resins (CFRTS) for aircraft [J]. Int. J. Autom. Technol., 2016, 10: 300
3 Guo L, Liu J H, Zhang J P, et al. Analysis of the research status of adhesively connection technology in aerospace industry [J]. Chin. Mech. Eng., 2021, 32: 1395
郭 磊, 刘检华, 张佳朋 等. 航天工业中胶接技术的研究现状分析 [J]. 中国机械工程, 2021, 32: 1395
4 Budhe S, Banea M D, de Barros S, et al. An updated review of adhesively bonded joints in composite materials [J]. Int. J. Adhes. Adhes., 2017, 72: 30
doi: 10.1016/j.ijadhadh.2016.10.010
5 Marques A C, Mocanu A, Tomić N Z, et al. Review on adhesives and surface treatments for structural applications: recent developments on sustainability and implementation for metal and composite substrates [J]. Materials, 2020, 13: 5590
doi: 10.3390/ma13245590
6 Demmouche N, Albedah A, Mohammed S M A K, et al. Interaction between adherend plasticity and adhesive damage in metal/composite joints: application to bonded composite repair of metallic structures [J]. Weld. World., 2019, 63: 211
doi: 10.1007/s40194-018-0659-6
7 Karataş M A, Motorcu A R, Gökkaya H. Optimization of machining parameters for kerf angle and roundness error in abrasive water jet drilling of CFRP composites with different fiber orientation angles [J]. J. Braz. Soc. Mech. Sci. Eng., 2020, 42: 173
doi: 10.1007/s40430-020-2261-2
8 Oliveira J J G, Campilho R D S G, Silva F J G, et al. Adhesive thickness effects on the mixed-mode fracture toughness of bonded joints[J]. J. Adhes., 2020, 96: 300
doi: 10.1080/00218464.2019.1681269
9 Hou H T. Effect of adhesive bondline thickness under salt solution on the single lap joint bonding performance [D]. Dalian: Dalian University of Technology, 2019
侯皓天. 盐水环境下胶层厚度对单搭接接头粘接性能的影响研究 [D]. 大连: 大连理工大学, 2019
10 Kadioglu F, Avil E, Ercan M E, et al. Effects of different overlap lengths and composite adherend thicknesses on the performance of adhesively-bonded joints under tensile and bending loadings [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 369: 012034
11 Zhou S, Sun Y, Muhammad R, et al. Progressive damage simulation of scaling effects on open-hole composite laminates under compression [J]. J. Reinf. Plast. Compos., 2017, 36: 1369
doi: 10.1177/0731684417708614
12 Kadioglu F, Demiral M. Failure behaviour of the single lap joints of angle-plied composites under three point bending tests [J]. J. Adhes. Sci. Technol., 2020, 34: 531
doi: 10.1080/01694243.2019.1674101
13 Mao Z G, Hou Y L, Li C, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP composite laminates [J]. Acta Mater. Compos. Sin., 2020, 37: 121
毛振刚, 侯玉亮, 李 成 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响 [J]. 复合材料学报, 2020, 37: 121
14 Demiral M, Kadioglu F. Failure behaviour of the adhesive layer and angle ply composite adherends in single lap joints: a numerical study [J]. Int. J. Adhes. Adhes. 2018, 87: 181
15 Wang G D, Melly S K, Ahmed S K K. Finite element study into the effects of fiber orientations and stacking sequence on drilling induced delamination in CFRP/Al stack [J]. Sci. Eng. Compos. Mater., 2018, 25: 555
doi: 10.1515/secm-2016-0161
16 Kumar T V V, Shankar G S S, Shankar B L. Experimental study on effect of stacking sequence, clearance and clamping torque on strength of FRP composite bolted joints [J]. Mater. Today: Proc., 2017, 4: 10746
17 Khashaba U A, Najjar I M R. Adhesive layer analysis for scarf bonded joint in CFRE composites modified with MWCNTs under tensile and fatigue loads [J]. Compos. Struct., 2018, 184: 411
doi: 10.1016/j.compstruct.2017.09.095
18 Sujon M A S, Habib M A, Abedin M Z. Experimental investigation of the mechanical and water absorption properties on fiber stacking sequences and orientation of jute/carbon epoxy hybrid composites [J]. J. Mater. Res. Technol., 2020, 9: 10970
doi: 10.1016/j.jmrt.2020.07.079
19 Abd El-Baky M A, Kamel M. Abrasive wear performance of jute-glass-carbon-reinforced composites: effect of stacking sequence and fibers relative amounts [J]. J. Nat. Fibers, 2021, 18: 213
doi: 10.1080/15440478.2019.1616347
20 Junchuan V, Thinvongpituk C. The influence of fiber orientation and stacking sequence on the crush behavior of hybrid AL/GFRP tubes under axial impact [J]. Mater. Trans., 2020, 61: 1322
doi: 10.2320/matertrans.MT-M2019393
21 Zou T C, Qin J X, Li L H, et al. Progressive failure analysis of titanium alloy-aramid fiber composites single lap joints [J]. Mater. Rep., 2020, 34: 20143
邹田春, 秦嘉徐, 李龙辉 等. 钛合金-芳纶纤维复合材料单搭接接头渐进失效分析 [J]. 材料导报, 2020, 34: 20143
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!