|
|
Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process |
ZHENG Yaya1,2( ), LUO Binghui2, BAI Zhenhai2 |
1.Department of Materials Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China 2.School of Materials Science and Engineering, Central South University, Changsha 410083, China |
|
Cite this article:
ZHENG Yaya, LUO Binghui, BAI Zhenhai. Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process. Chinese Journal of Materials Research, 2022, 36(12): 926-932.
|
Abstract The evolution of hardening, microstructure and precipitate of Al-Mg-Si alloy during early artificial aging process were investigated by means of microhardness tester, differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). The results show that the alloy aged at 170℃ has higher peak hardness. At the early aging stage, the high number of solute clusters and GP regions precipitated within grains, and the hardness of the alloy significantly increased. The hardness of the alloy reaches the peak value after being treated at 170℃ for 4 h, and the acicular β"-phase is the main precipitated phase within grains. The three-dimensional coherent strain at the interface between β"-phase and Al matrix is the main reason for the strengthening of the alloy. At the same time, the precipitated particulates distributed discontinuously along grain boundary. With the increase of aging time, the β"-phase coarsened and the continuity of the precipitated particulates decreased. During the over-aging stage, the hardness of the alloy is greatly reduced due to the severe coarsening and the decrease of number of the precipitates. At the initial stage of aging, the precipitation sequence of the alloy is as follows: supersaturated solid solution → spherical atomic clusters → needle-like GP region → needle-like β"-phase.
|
Received: 14 July 2021
|
|
Fund: the Research Foundation of Education Bureau Hunan Province(22C0598) |
1 |
Zeng Y, Yin Z M, Pan Q L, et al. Present research and developing trends of ultra-high strength aluminum alloys [J]. J. Cent. South Univ., 2002, 33(06): 592
|
|
曾 渝, 尹志民, 潘青林 等. 超高强铝合金的研究现状及发展趋势 [J]. 中南工业大学学报, 2002, 33(06): 592
|
2 |
Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. Chin. J. Nonferrous. Met., 2010, 20(9): 1705
|
|
刘 兵, 彭超群, 王日初 等. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报, 2010, 20(9): 1705
|
3 |
Zhu K, Xiong B Q, Yan H W, et al. Numerical simulation on residual stresses of aluminum alloy thick plates for aircraft applications: A review [J]. Chin. J. Nonferrous. Met., 2020, 30(05): 961
|
|
祝 楷, 熊柏青, 闫宏伟. 航空铝合金厚板残余应力数值模拟研究现状 [J]. 中国有色金属学报, 2020, 30(05): 961
|
4 |
Chen J H, Liu C H. Microstructure evolution of precipitates in AlMgSi(Cu) alloys [J]. Chin. J. Nonferrous. Met., 2011, 21(10): 2352
|
|
陈江华, 刘春辉. AlMgSi(Cu)合金中纳米析出相的结构演变 [J]. 中国有色金属学报, 2011, 21 (10): 2352
|
5 |
Li X L, Chen J H, Liu C H, et al. Effects of T6 and T78 tempers on the microstructures and properties of Al-Mg-Si-Cu alloys [J]. Acta Metall Sin., 2013, 49 (2): 243
doi: 10.3724/SP.J.1037.2012.00509
|
|
李祥亮, 陈江华, 刘春辉 等. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响 [J]. 金属学报, 2013, 49 (2): 243
|
6 |
Jin S, Ngai T, Zhang G, et al. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy [J]. Mater. Sci. Eng. A, 2018, 74(2): 53
|
7 |
Wang Z X, Li H, Gu J H, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys [J]. Chin. J. Nonferrous. Met., 2012, 22(12): 3348
|
|
王芝秀, 李 海, 顾建华 等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响 [J]. 中国有色金属学报, 2012, 22(12): 3348
|
8 |
Lin Li, Zheng Z Q, Li J F, et al. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy [J]. Rare. Metal. Mat. Eng., 2012, 41(6): 1004
|
|
林 莉, 郑子樵, 李劲风. 时效制度对6156铝合金力学性能及腐蚀性能的影响 [J]. 稀有金属材料与工程, 2012, 41(6): 1004
|
9 |
Huis V M A, Chen J H, Zandbergen H W, et al. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution [J]. Acta Mater., 2006, 54(11): 2945
doi: 10.1016/j.actamat.2006.02.034
|
10 |
Taylor P, Geuser F D, Lefebvre W. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy [J]. Phil. Mag. Lett., 2014, 86(4): 37
doi: 10.1080/09500830500497058
|
11 |
Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys [J]. Acta Mater., 1999, 47(5): 1537
doi: 10.1016/S1359-6454(99)00033-6
|
12 |
Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46(9): 3283
doi: 10.1016/S1359-6454(97)00493-X
|
13 |
Marioara C D, Andersen S, Jansen J J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater, 2003, 51(7): 789
doi: 10.1016/S1359-6454(02)00470-6
|
14 |
Tonaster M, Hasting H S, Lefebvere W, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J Appl. Phys., 2010, 108(7): 073527
|
15 |
Ji S, Yang W, Gao F, et al. Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys [J]. Mater. Sci. Eng. A., 2013, 564(1): 130
doi: 10.1016/j.msea.2012.11.095
|
16 |
Matusuda K, Ikeno S, Gamada H K, et al. High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6%Mg2Si Alloy [J]. Metall. Mater. Trans. A, 1998, 29(4): 1161
doi: 10.1007/s11661-998-0242-7
|
17 |
Fallah V, Langeller B, Ofori N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103(15): 290
doi: 10.1016/j.actamat.2015.09.027
|
18 |
Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy [J]. Metall. Mater. Trans. A, 2008, 39(2): 243
doi: 10.1007/s11661-007-9438-5
|
19 |
Zhang X M, Tang J F, Deng H Q, et al. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys [J]. J Alloy Compd., 2016, 660(5): 55
doi: 10.1016/j.jallcom.2015.11.085
|
20 |
Messina L, Malerba L, Olsson P. Stability and mobility of small vacancy-solute complexes in Fe-MnNi and dilute Fe-X alloys: a kinetic monte carlo study [J]. Nucl. Instrum. Meth. B., 2015, 352(1): 61
doi: 10.1016/j.nimb.2014.12.032
|
21 |
Kovacs I, Lendval, Nagy E. The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys [J]. Acta Metall., 1972, 20(7): 975
doi: 10.1016/0001-6160(72)90092-2
|
22 |
Li H, Zhao P, Wang Z X. The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy [J]. Corros. Sci., 2016, 107: 113
doi: 10.1016/j.corsci.2016.02.025
|
23 |
Zheng Y Y, Luo B H, Bai Z H, et al. Evolution of the initial precipitation and strengthening mechanism of Al-Mg-Si alloys [J]. JOM, 2019, 71(12): 4737
doi: 10.1007/s11837-019-03856-3
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|