Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 926-932    DOI: 10.11901/1005.3093.2021.403
ARTICLES Current Issue | Archive | Adv Search |
Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process
ZHENG Yaya1,2(), LUO Binghui2, BAI Zhenhai2
1.Department of Materials Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
2.School of Materials Science and Engineering, Central South University, Changsha 410083, China
Cite this article: 

ZHENG Yaya, LUO Binghui, BAI Zhenhai. Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process. Chinese Journal of Materials Research, 2022, 36(12): 926-932.

Download:  HTML  PDF(14837KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of hardening, microstructure and precipitate of Al-Mg-Si alloy during early artificial aging process were investigated by means of microhardness tester, differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). The results show that the alloy aged at 170℃ has higher peak hardness. At the early aging stage, the high number of solute clusters and GP regions precipitated within grains, and the hardness of the alloy significantly increased. The hardness of the alloy reaches the peak value after being treated at 170℃ for 4 h, and the acicular β"-phase is the main precipitated phase within grains. The three-dimensional coherent strain at the interface between β"-phase and Al matrix is the main reason for the strengthening of the alloy. At the same time, the precipitated particulates distributed discontinuously along grain boundary. With the increase of aging time, the β"-phase coarsened and the continuity of the precipitated particulates decreased. During the over-aging stage, the hardness of the alloy is greatly reduced due to the severe coarsening and the decrease of number of the precipitates. At the initial stage of aging, the precipitation sequence of the alloy is as follows: supersaturated solid solution → spherical atomic clusters → needle-like GP region → needle-like β"-phase.

Key words:  metallic materials      Al-Mg-Si alloy      precipitation behavior      strengthening mechanism     
Received:  14 July 2021     
ZTFLH:  TG146.2  
Fund: the Research Foundation of Education Bureau Hunan Province(22C0598)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.403     OR     https://www.cjmr.org/EN/Y2022/V36/I12/926

Precipitate typeStructureSize/nmMorphologyLattice parameter
ClustersUnresolvedUnknownSphericalUnresolved
GP zonesUnresolved∼5Needle-likeUnresolved
GP zonesMonoclinic-Needle-likeUnresolved
β″Base-centered monoclinic∼4×4×50Needle-likea=1.534 nm, c=0.683 nm, b=0.405 nm, β=106°
β″Monoclinic∼4×4×50Needle-likea=0.650 nm, c=0.760 nm, b=0.405 nm, γ=70°
β″Base-centered monoclinic∼4×4×50Needle-likea=1.516 nm, c=0.674 nm, b=0.405 nm, β=105.3°
Table 1  Basic summary of known precipitates in Al-Mg-Si alloy
Fig.1  Hardness variation of Al-Mg-Si alloys during ageing at different temperatures
Fig.2  TEM image of Al-Mg-Si alloys with different heat-treatment history (a) 140℃/20 min; (b) 140℃/60 min; (c) 140℃/300 min; (d) 170℃/20 min; (e) 170℃/60 min; (f) 170℃/300 min; (g) 200℃/20 min; (h) 200℃/60 min; (i) 200℃/300 min; (j) 140℃/600 min; (k)170℃/600 min; (l) 200℃/600 min
Ageing time/minAgeing temperature/℃Average size/nmNumber density/1023·m-3Volume fraction/%
20140---
170---
2007.2±1.30.82±0.120.98±0.03
601403.8±1.20.77±0.110.44±0.02
17012.3±1.11.79±0.161.25±0.03
20017.2±1.41.52±0.171.48±0.02
30014015.4±1.31.39±0.181.29±0.02
17028.8 ±1.41.59±0.131.69±0.02
20050.8±1.50.83±0.111.41±0.03
50014019.5±1.41.48±0.151.34±0.02
17039.8±1.61.58±0.171.72±0.04
20065.3±1.40.69±0.181.33±0.03
Table 2  Statistical calculation of the size and density of the precipitates in the alloy with different heat-treatment histores
Fig.3  DSC curves of the Al-Mg-Si alloys after heat-treatment at various conditions
Fig.4  HRTEM images of typical precipitate in the Al-Mg-Si alloy with different aging conditions and corresponding FFT pattern (a) 170℃/10 min; (b) 170℃/20 min; (c) 170℃/360 min; (d) 170℃/500 min
Fig.5  HRTEM images of the β" phase and corresponding FFT and IFFT pattern: (a) lying β′′ along [001]Al; (b, c, d) embedded β" and the corresponding FFT and IFFT pattern
1 Zeng Y, Yin Z M, Pan Q L, et al. Present research and developing trends of ultra-high strength aluminum alloys [J]. J. Cent. South Univ., 2002, 33(06): 592
曾 渝, 尹志民, 潘青林 等. 超高强铝合金的研究现状及发展趋势 [J]. 中南工业大学学报, 2002, 33(06): 592
2 Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. Chin. J. Nonferrous. Met., 2010, 20(9): 1705
刘 兵, 彭超群, 王日初 等. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报, 2010, 20(9): 1705
3 Zhu K, Xiong B Q, Yan H W, et al. Numerical simulation on residual stresses of aluminum alloy thick plates for aircraft applications: A review [J]. Chin. J. Nonferrous. Met., 2020, 30(05): 961
祝 楷, 熊柏青, 闫宏伟. 航空铝合金厚板残余应力数值模拟研究现状 [J]. 中国有色金属学报, 2020, 30(05): 961
4 Chen J H, Liu C H. Microstructure evolution of precipitates in AlMgSi(Cu) alloys [J]. Chin. J. Nonferrous. Met., 2011, 21(10): 2352
陈江华, 刘春辉. AlMgSi(Cu)合金中纳米析出相的结构演变 [J]. 中国有色金属学报, 2011, 21 (10): 2352
5 Li X L, Chen J H, Liu C H, et al. Effects of T6 and T78 tempers on the microstructures and properties of Al-Mg-Si-Cu alloys [J]. Acta Metall Sin., 2013, 49 (2): 243
doi: 10.3724/SP.J.1037.2012.00509
李祥亮, 陈江华, 刘春辉 等. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响 [J]. 金属学报, 2013, 49 (2): 243
6 Jin S, Ngai T, Zhang G, et al. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy [J]. Mater. Sci. Eng. A, 2018, 74(2): 53
7 Wang Z X, Li H, Gu J H, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys [J]. Chin. J. Nonferrous. Met., 2012, 22(12): 3348
王芝秀, 李 海, 顾建华 等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响 [J]. 中国有色金属学报, 2012, 22(12): 3348
8 Lin Li, Zheng Z Q, Li J F, et al. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy [J]. Rare. Metal. Mat. Eng., 2012, 41(6): 1004
林 莉, 郑子樵, 李劲风. 时效制度对6156铝合金力学性能及腐蚀性能的影响 [J]. 稀有金属材料与工程, 2012, 41(6): 1004
9 Huis V M A, Chen J H, Zandbergen H W, et al. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution [J]. Acta Mater., 2006, 54(11): 2945
doi: 10.1016/j.actamat.2006.02.034
10 Taylor P, Geuser F D, Lefebvre W. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy [J]. Phil. Mag. Lett., 2014, 86(4): 37
doi: 10.1080/09500830500497058
11 Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys [J]. Acta Mater., 1999, 47(5): 1537
doi: 10.1016/S1359-6454(99)00033-6
12 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46(9): 3283
doi: 10.1016/S1359-6454(97)00493-X
13 Marioara C D, Andersen S, Jansen J J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater, 2003, 51(7): 789
doi: 10.1016/S1359-6454(02)00470-6
14 Tonaster M, Hasting H S, Lefebvere W, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J Appl. Phys., 2010, 108(7): 073527
15 Ji S, Yang W, Gao F, et al. Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys [J]. Mater. Sci. Eng. A., 2013, 564(1): 130
doi: 10.1016/j.msea.2012.11.095
16 Matusuda K, Ikeno S, Gamada H K, et al. High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6%Mg2Si Alloy [J]. Metall. Mater. Trans. A, 1998, 29(4): 1161
doi: 10.1007/s11661-998-0242-7
17 Fallah V, Langeller B, Ofori N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103(15): 290
doi: 10.1016/j.actamat.2015.09.027
18 Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy [J]. Metall. Mater. Trans. A, 2008, 39(2): 243
doi: 10.1007/s11661-007-9438-5
19 Zhang X M, Tang J F, Deng H Q, et al. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys [J]. J Alloy Compd., 2016, 660(5): 55
doi: 10.1016/j.jallcom.2015.11.085
20 Messina L, Malerba L, Olsson P. Stability and mobility of small vacancy-solute complexes in Fe-MnNi and dilute Fe-X alloys: a kinetic monte carlo study [J]. Nucl. Instrum. Meth. B., 2015, 352(1): 61
doi: 10.1016/j.nimb.2014.12.032
21 Kovacs I, Lendval, Nagy E. The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys [J]. Acta Metall., 1972, 20(7): 975
doi: 10.1016/0001-6160(72)90092-2
22 Li H, Zhao P, Wang Z X. The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy [J]. Corros. Sci., 2016, 107: 113
doi: 10.1016/j.corsci.2016.02.025
23 Zheng Y Y, Luo B H, Bai Z H, et al. Evolution of the initial precipitation and strengthening mechanism of Al-Mg-Si alloys [J]. JOM, 2019, 71(12): 4737
doi: 10.1007/s11837-019-03856-3
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!