Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 29-39    DOI: 10.11901/1005.3093.2021.334
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Microwave Absorbtion Performance of Composite Hollow Carbon/Fe3O4 Magnetic Quantum Dots
CHEN Guanzhen1, CHEN Ping1,2(), XU Dongwei1, MIN Weixing1
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Cite this article: 

CHEN Guanzhen, CHEN Ping, XU Dongwei, MIN Weixing. Preparation and Microwave Absorbtion Performance of Composite Hollow Carbon/Fe3O4 Magnetic Quantum Dots. Chinese Journal of Materials Research, 2022, 36(1): 29-39.

Download:  HTML  PDF(8674KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite of hollow carbon/Fe3O4 magnetic quantum dots (C/MQDs) was synthesized via in-situ polymerization-solvothermal-calcination process with silicon dioxide as the template. The morphology, crystallographic structure, chemical composition, intrinsic structural defects, relative graphitization degree and electromagnetic parameters of the prepared composite C/MQDs were characterized by means of SEM, TEM, Raman spectroscopy, XRD, XPS and Vector network analyzer (VNA) etc. It follows that electromagnetic parameters of the prepared C/MQDs could be adjusted by changing the addition amount of ferric nitrate so that to adjust its microwave absorption (MA) performance. In fact, a hollow ring made of the mixed composite and paraffin with 7 mm in outer diameter and 2.55 mm in thickness presented a maximum effective absorption bandwidth (EAB) of 7.06 GHz and a minimum reflection loss value (RLmin) of -43 dB. The excellent microwave absorption performance of the prepared composite is mainly derived from its electromagnetic matching characteristics and the synergistic effect of dielectric-magnetic loss.

Key words:  composite      microwave absorbing materials      solvothermal      X-band      hollow structure     
Received:  28 May 2021     
ZTFLH:  TB332  
Fund: the Liaoning Revitalization Talents Program(XLYC1802085);National Natural Science Foundation of China(51873109);Fundamental Research Funds for the Central Universities(DUT20TD207);Dalian Science and Technology Innovation Fund Project(2019J11CY007);Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education(KF2004)
About author:  CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.334     OR     https://www.cjmr.org/EN/Y2022/V36/I1/29

Fig.1  Schematic illustration for the preparation of C/MQDs
Fig.2  XRD patterns of as-prepared H-C, H-C@Fe-G and C/MQDs microspheres
Fig.3  Raman spectra of H-C and C/MQDs-x
Fig.4  Hysteresis loop of C/MQDs-x and its enlarge view
Fig.5  XPS survey scan (a), Fe 2p (b), C 1s (c) and O 1s (d) high resolution spectrum for C/MQDs-2
Fig.6  SEM images of H-C (a, b, c), H-C@Fe-G (d, e, f) and C/MQDs-2 (g, h, i)
Fig.7  TEM images and EDS element mapping of C/MQDs
Fig.8  Contours of reflection loss in the frequency range of 1~18 GHz with varied thickness from 1.5~5.0 mm (a, c, e) and (b, d, f) reflection loss of three samples with 15% (mass fraction) C/MQDs-xvs thickness
Fig.9  Minimum RL values at specific thickness of different kinds of Fe3O4/C hybrids (a) and the corresponding EAB at RLmin of different kinds of Fe3O4/C hybrids (b)
Fig.10  ε′ (a), ε″ (b), tanδε(c) and Cole-Cole semicircles (d) of C/MQDs-x
Fig.11  μ′ (a), μ″ (b), tanδμ (c) and eddy-current loss (d) of C/MQDs-x
Fig.12  Attenuation constant (a), modulus of Zin-1 of various samples (b) with a thickness of 2.5 mm in the frequency range of 1~18 GHz, dependence of matching thickness (tm) and calculated thickness on matching frequency (fm) at the wavelength of 1/4 (c)
Fig.13  Absorbing mechanism of C/MQDs composites
1 Zhao B, Li Y, Zeng Q W, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties [J]. Small, 2020, 16: 2003502
2 Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3: 10232
3 Xiang Z, Song Y M, Xiong J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks [J]. Carbon, 2019, 142: 20
4 Liu P B, Huang Y, Zhang X. Synthesis and excellent microwave absorption properties of graphene/polypyrrole composites with Fe3O4 particles prepared via a co-precipitation method [J]. Mater. Lett., 2014, 129: 35
5 Song X H, Li X J, Yan H H. Preparation and microwave absorption properties of MWCNTs/Fe3O4/NBR composites [J]. Diam. Relat. Mater., 2019, 100: 107573
6 Liu X F, Chen Y X, Cui X R, et al. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride [J]. J. Mater. Chem., 2015, 3A: 12197
7 Meng F B, Wei W, Chen X N, et al. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption [J]. Phys. Chem. Chem. Phys., 2016, 18: 2510
8 Cheng Y, Cao J M, Li Y, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption [J]. ACS Sustainable Chem. Eng., 2018, 6: 1427
9 He J R, Luo L, Chen Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries [J]. Adv. Mater., 2017, 29: 1702707
10 Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 12997
11 Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
12 Liu T, Zhang L Y, You W, et al. Core-shell nitrogen-doped carbon hollow Spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor [J]. Small, 2018, 14: 1702407
13 Ma F X, Hu H, Wu H B, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties [J]. Adv. Mater., 2015, 27: 4097
14 Wei S, Wang X X, Zhang B Q, et al. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance [J]. Chem. Eng. J., 2017, 314: 477
15 Mishra M, Singh A P, Singh B P, et al. Conducting ferrofluid: a high-performance microwave shielding material [J]. J. Mater. Chem., 2014, 2A: 13159
16 Xu H L, Yin X W, Zhu M, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption [J]. Carbon, 2019, 142: 346
17 Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
18 Sun X, He J P, Li G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem., 2013, 1C: 765
19 Wang F Y, Wang N, Han X J, et al. Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption [J]. Carbon, 2019, 145: 701
20 Cao M S, Hou Z L, Song W L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
21 Liang X H, Wang G H, Gu W H, et al. Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption [J]. Carbon, 2021, 177: 97
22 Liang X H, Man Z M, Quan B, et al. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption [J]. Nano-Micro Lett., 2020, 12: 102
23 Cao M S, Cai Y Z, He P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding [J]. Chem. Eng. J., 2019, 359: 1265
24 Huang L, Li J J, Wang Z J, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane [J]. Carbon, 2019, 143: 507
25 Xu X F, Wang G Z, Wan G P, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption [J]. Chem. Eng. J., 2020, 382: 122980
26 Wang Y L, Yang S H, Wang H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber [J]. Carbon, 2020, 167: 485
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!