Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 21-28    DOI: 10.11901/1005.3093.2020.472
ARTICLES Current Issue | Archive | Adv Search |
Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel
GAO Ye1, REN Jiakuan1, LI Zhifeng2, CUI Cong1, CHEN Jun1, LIU Zhenyu1()
1.School of Material Science & Engineering, Northeastern University, Shenyang 110819, China
2.College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
Cite this article: 

GAO Ye, REN Jiakuan, LI Zhifeng, CUI Cong, CHEN Jun, LIU Zhenyu. Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel. Chinese Journal of Materials Research, 2022, 36(1): 21-28.

Download:  HTML  PDF(6236KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of austenitizing temperature on the microstructure evolution and low temperature toughness of high strength low alloy (HSLA) steel was investigated by OM and SEM. The results show that with the increase of austenitizing temperature from 850℃ to 950℃ while heat treated for 30 min, the average austenite grain size increases from 7.22 μm to 17.39 μm (the temperature of AC3 is 819℃). After quenching at 850~950℃, the microstructure is lath martensite. The yield strength and tensile strength decreased respectively, and there was no obvious variation in elongation. However, the toughness decreased significantly from 97 J to 31 J. The crystallographic analysis results by EBSD and ARPGE software show that the grain size increased and the variants selection enhanced with the increase of quenching temperature, which show that austenite grain is mainly occupied by a single pair of variants. In addition, the combination mode of the variants for the 850A sample tends to show a CP (Close packed) combination mode. When the austenitizing temperature increased to 950℃, the combination mode of the variants is more likely to be Bain group combination, and the proportion of operation factors representing high angle misorientation decreases, which leads to the decrease of high angle grain boundary density, and the ability to hinder crack propagation is reduced, further deteriorating the impact toughness.

Key words:  metallic materials      HSLA steel      austenitizing temperature      variant      toughness     
Received:  06 November 2020     
ZTFLH:  TG142.1+1  
Fund: Liaoning Revitalization Tatents Program(XLYC1902034)
About author:  LIU Zhenyu, Tel: 18240049188, E-mail: zyliu@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.472     OR     https://www.cjmr.org/EN/Y2022/V36/I1/21

Fig.1  Morphologies of prior austenite grains at different austenitizing temperatures (a) 850℃; (b) 900℃; (c) 950℃
Fig.2  Grain size distribution of prior austenite (a) 850℃; (b) 900℃; (c) 950℃
Fig.3  Microstructure of experimental steel after quenching at different temperatures (a) 850℃; (b) 900℃; (c) 950℃
Fig.4  Mechanical properties of experimental steel after austenitizing with different temperatures
Fig.5  Impact fracture morphologies of experimental steel (a, d) 850℃; (b, e ) 900℃; (c, f) 950℃
Fig.6  IPF, boundary distribution of test steel (white line: 5~15°; black line: 15~45°; yellow line: >45°) (a) 850A; (b) 950A; (c) frequency of boundary
Temperature / ℃

DLAGB

(5~15°)

DHAGB

(15~45°)

DHAGB

(>45°)

8500.290.130.71
9500.410.150.40
Table 1  Density of grain boundary
Fig.7  IPF maps of (a) G1, (b) G2, and {100} pole figures of (c) G1, (d) G2
Fig.8  Crystallographic characteristics of Bain/CP group in experimental steel. Bain group (a) G1; (b) G2; CP group: (c) G1; (d) G2
OperatorOR/DirectionOperatorOR/Direction
O0O1247.1°/[56 24 49]α
O160.0°/[1 1 0]αO1350.5°/[20 5 16]α
O260.0°/[1 1 1]αO14-50.5°/[20 5 16]α
O310.5°/[1 1 1]αO15-50.5°/[16 24 15]α
O4-60.0°/[1 1 0]αO16-14.8°/[4 56 21]α
O510.5°/[1 1 0]αO17-47.1°/[56 24 49]α
O650.5°/[16 24 15]αO1821.0°/[0 4 9]α
O749.4°/[1 0 1]αO1957.2°/[21 7 18]α
O849.4°/[1 1 1]αO2020.6°/[5 9 9]α
O957.2°/[22 13 26]αO2151.7°/[9 9 5]α
O10-57.2°/[22 13 26]αO2220.6°/[4 0 13]α
O1114.8°/[4 56 21]αO23-57.2°/[21 7 18]α
Table 2  Operators linked to K-S relationship
Fig.9  (a) operators; (b) operators of G1~G2
1 Chen G, Luo X B, Chai F, et al. Effect of double quenching on microstructure and impact toughness of a high strength low alloy steel [J]. Chin. J. Mater. Res., 2020, 34: 705
陈 刚, 罗小兵, 柴 锋等. 两次淬火对HSLA钢组织和冲击韧性的影响 [J]. 材料研究学报, 2020, 34: 705
2 Kim N J. The physical metallurgy of HSLA linepipe steels—a review [J]. JOM, 1983, 35(4): 21
3 Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
王立军, 蔡庆伍, 余 伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
4 Li A M, Hu M J. Influence of quenching temperature on microstructure and properties of 40Cr steel by zero time holding quenching [J]. Adv. Mater. Res., 2011, 215: 25
5 Lu Y M, Liang Y L, Long S L, et al. Effect of the martensite lath on toughness of 20CrNi2Mo steel [J]. Chin. J. Mater. Res., 2018, 32: 290
卢叶茂, 梁益龙, 龙绍檑等. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响 [J]. 材料研究学报, 2018, 32: 290
6 Cao H W, Luo X H, Liu S, et al. Effect of quenching temperature on cryogenic mechanical properties of a 7Ni steel [J]. Chin. J. Mater. Res., 2018, 32: 388
曹宏玮, 罗兴宏, 刘 实等. 淬火温度对7Ni钢低温力学性能的影响 [J]. 材料研究学报, 2018, 32: 388
7 Wu B B, Wang X L, Wang Z Q, et al. New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel [J]. Mater. Sci. Eng., 2019, 745A: 126
8 You Y, Shang C J, Chen L, et al. Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel [J]. Mater. Sci. Eng., 2012, 546A: 111
9 Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
10 Morris J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
11 Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
12 Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
13 Wu B B, Wang Z Q, Wang X L, et al. Toughening of martensite matrix in high strength low alloy steel: regulation of variant pairs [J]. Mater. Sci. Eng., 2019, 759A: 430
14 Xi X H, Wang J L, Chen L Q, et al. On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel [J]. J. Mater. Sci., 2020, 55: 10863
15 Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
16 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
17 Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
18 Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, 704A: 448
19 Celada-Casero C, Sietsma J, Santofimia M J. The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
20 Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Trans., 1975, 6A: 791
21 Yang Z Y, Chen J Y, Su J, et al. TEM study on relative orientation between adjacent martensite laths [J]. Trans. Mater. Heat Treat., 2004, 25(6): 35
杨卓越, 陈嘉砚, 苏 杰等. 相邻板条马氏体间位向关系的TEM研究 [J]. 材料热处理学报, 2004, 25(6): 35
22 Wang S C, Li Z C, Yi D Q, et al. Orientation relationship of low temperature tempered martensite investigated by electron back scattered diffraction [J]. J. Cent. South Univ. (Sci. Technol.), 2011, 42: 2620
王申存, 李志成, 易丹青等. 低温回火马氏体取向关系的电子背散射衍射研究 [J]. 中南大学学报(自然科学版), 2011, 42: 2620
23 Cayron C. One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation [J]. Acta Crystallogr., 2013, 69A: 498
24 Mao G J, Cao R, Cayron C, et al. Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints [J]. J. Mater. Process. Technol., 2018, 262: 638
25 Cayron C. EBSD imaging of orientation relationships and variant groupings in different martensitic alloys and widmanstätten iron meteorites [J]. Mater. Charact., 2014, 94: 93
26 Wang W, Shan Y Y, Yang K. Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., 2019, 502A: 38
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!