|
|
Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform |
ZHANG Shouqing1,2, HU Xiaofeng1( ), DU Yubin1,2, JIANG Haichang1, PANG Huiyong3, RONG Lijian1 |
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Wuyang Iron and Steel Co. Ltd., Pingdingshan 462500, China |
|
Cite this article:
ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform. Chinese Journal of Materials Research, 2022, 36(4): 250-260.
|
Abstract The effect of quenching cooling rate on the microstructure, effective grain size (EGS) and mechanical properties of a Ni-Cr-Mo-B steel for offshore platform was investigated by means of dilatometer, SEM, EBSD, in combination with hardness, tensile and impact tests. The results show that the microstructures of the steel by different cooling rates mainly include lath martensite (LM), lath bainite (LB), granular bainite (GB) and ferrite (F). With the decrease of cooling rate the microstructures of the steel can be LM (>20℃/s), LM/LB (20~2℃/s), LB (2~1℃/s), LB /GB (1~0.2℃/s) and GB/F (0.2~0.02℃/s). Meanwhile, the hardness gradually decreases from 393HV by 100℃/s to 291HV by 0.02℃/s. After tempered, the yield strength decreases from 836 MPa for water-cooled steel to 726 MPa for furnace-cooled steel, while the elongation almost keeps constant around about 20%. Impact energy at -60℃ for oil-cooled steel is the highest about 199 J, followed by water-cooled steel (54 J), and the air-cooled and furnace-cooled steels exhibit the lowest impact energy (<30 J). This is because the microstructure of oil-cooled steel is LMT/LBT, which has the smallest EGS (1.6 μm) and the strongest effect of hindering the crack growth. However, the air-cooled and furnace-cooled steels present microstructures GBT/LBT and GBT/F respectively, which show the larger EGS (2.4 and 2.8 μm) and the weaker effect of hindering the crack growth.
|
Received: 29 April 2021
|
|
Fund: National Key Research and Development Program of China(2016YFB0300601);Liaoning Revitalization Talents Program(XLYC1907143);Strategic Priority Research Program of Chinese Academy of Sciences(XDC04000000);Liaoning Natural Science Foundation(2020-MS-008) |
About author: HU Xiaofeng, Tel: (024)23971985, E-mail: xfhu@imr.ac.cn
|
1 |
Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, 1, 1
|
|
刘振宇, 唐 帅, 陈 俊 等. 海洋平台用钢的研发生产现状与发展趋势[J]. 鞍钢技术, 2015, 1: 1
|
2 |
Wu T, Wu D Z, Ye J J, et al. Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform [J]. Wide Heavy Plate, 2015, 21(3): 1
|
|
吴 涛, 吴东召, 叶建军 等. 自升式海洋平台齿条用177.8 mm厚度钢板的研制开发[J]. 宽厚板, 2015, 21(3): 1
|
3 |
Wang Q H, Ye Q B, Wang Z D, et al. Thickness effect on microstructure, strength, and toughness of a quenched and tempered 178 mm thickness steel plate [J]. Metals, 2020, 10(5): 572
doi: 10.3390/met10050572
|
4 |
Hong S, Song J, Kim M C, et al. Effects of microstructural variation on charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel [J]. Met. Mater. Int., 2016, 22(2): 196
doi: 10.1007/s12540-016-5568-x
|
5 |
Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform [J]. Acta Metall. Sin., 2020, 56(9): 1227
|
|
张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应 [J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
|
6 |
Gao Z Y. Study of hot deformtation behavior and microstructure evolution of HSLA ultra-heavy plate steel [D]. Beijing: University of Science and Technology Beijing, 2016
|
|
高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D]. 北京: 北京科技大学, 2016
|
7 |
Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
doi: 10.1016/j.actamat.2017.11.036
|
8 |
Wu B B, Wang Z Q, Yu Y S, et al. Thermodynamic basis of twin-related variant pair in high strength low alloy steel [J]. Scr. Mater., 2019, 170: 43
doi: 10.1016/j.scriptamat.2019.05.016
|
9 |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
|
10 |
Hofer C, Bliznuk V, Verdiere A, et al. High-resolution characterization of the martensite-austenite constituent in a carbide-free bainitic steel [J]. Mater. Charact., 2018, 144: 182
doi: 10.1016/j.matchar.2018.07.011
|
11 |
Fonda R W, Spanos G. Effects of cooling rate on transformations in a Fe-9 Pct Ni steel [J]. Metall. Mater. Trans., 2014, 45A: 5982
|
12 |
Thompson S W, Colvin D J, Krauss G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel [J]. Metall. Mater. Trans., 1996, 27A: 1557
|
13 |
Wen T, Hu X F, Song YY, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50(4): 447
|
|
温 涛, 胡小锋, 宋元元 等, 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50(4): 447
|
14 |
Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
|
15 |
Zhou T, Babu R P, Hou Z Y, et al. Precipitation of multiple carbides in martensitic CrMoV steels-experimental analysis and exploration of alloying strategy through thermodynamic calculations [J]. Materialia, 2020, 9: 100630
doi: 10.1016/j.mtla.2020.100630
|
16 |
Zhang S Q, Hu X F, Jiang H C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Cr-Ni-Mo-V steel [J]. Heat Treat. Met., 2018, 43(3): 177
|
|
张守清, 胡小锋, 姜海昌 等. 热处理温度对Cr-Ni-Mo-V钢组织和力学性能的影响 [J]. 金属热处理, 2018, 43(3): 177
|
17 |
Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54(19): 5323
doi: 10.1016/j.actamat.2006.07.009
|
18 |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater. 2003: 51(6): 1789
doi: 10.1016/S1359-6454(02)00577-3
|
19 |
Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels [J]. Metall. Mater. Trans., 1979, 10A: 861
|
20 |
Wang X Y, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel [J]. Acta Metall. Sin., 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
|
|
王小勇, 潘 涛, 王华 等. Ni-Cr-Mo-B 超厚钢板表面低碳回火马氏体组织的韧性研究 [J]. 金属学报, 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
|
21 |
Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389 :176
|
22 |
Lee K H, Kim M C, Yang W J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels [J]. Mater. Sci. Eng., 2013, A565: 158
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|