Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 250-260    DOI: 10.11901/1005.3093.2021.275
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform
ZHANG Shouqing1,2, HU Xiaofeng1(), DU Yubin1,2, JIANG Haichang1, PANG Huiyong3, RONG Lijian1
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Wuyang Iron and Steel Co. Ltd., Pingdingshan 462500, China
Cite this article: 

ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform. Chinese Journal of Materials Research, 2022, 36(4): 250-260.

Download:  HTML  PDF(30162KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of quenching cooling rate on the microstructure, effective grain size (EGS) and mechanical properties of a Ni-Cr-Mo-B steel for offshore platform was investigated by means of dilatometer, SEM, EBSD, in combination with hardness, tensile and impact tests. The results show that the microstructures of the steel by different cooling rates mainly include lath martensite (LM), lath bainite (LB), granular bainite (GB) and ferrite (F). With the decrease of cooling rate the microstructures of the steel can be LM (>20℃/s), LM/LB (20~2℃/s), LB (2~1℃/s), LB /GB (1~0.2℃/s) and GB/F (0.2~0.02℃/s). Meanwhile, the hardness gradually decreases from 393HV by 100℃/s to 291HV by 0.02℃/s. After tempered, the yield strength decreases from 836 MPa for water-cooled steel to 726 MPa for furnace-cooled steel, while the elongation almost keeps constant around about 20%. Impact energy at -60℃ for oil-cooled steel is the highest about 199 J, followed by water-cooled steel (54 J), and the air-cooled and furnace-cooled steels exhibit the lowest impact energy (<30 J). This is because the microstructure of oil-cooled steel is LMT/LBT, which has the smallest EGS (1.6 μm) and the strongest effect of hindering the crack growth. However, the air-cooled and furnace-cooled steels present microstructures GBT/LBT and GBT/F respectively, which show the larger EGS (2.4 and 2.8 μm) and the weaker effect of hindering the crack growth.

Key words:  metallic materials      Ni-Cr-Mo-B steel      microstructure      cooling rate      effective grain size      impact energy     
Received:  29 April 2021     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2016YFB0300601);Liaoning Revitalization Talents Program(XLYC1907143);Strategic Priority Research Program of Chinese Academy of Sciences(XDC04000000);Liaoning Natural Science Foundation(2020-MS-008)
About author:  HU Xiaofeng, Tel: (024)23971985, E-mail: xfhu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.275     OR     https://www.cjmr.org/EN/Y2022/V36/I4/250

CNiMnMoCrBSiNbVSPFe
0.131.260.950.411.020.00110.170.0220.0410.0030.014Bal.
Table 1  Chemical compositions of the test steel (mass fraction / %)
Fig.1  Schematic diagram of heat treatment process of experimental steels
Fig.2  Low magnified SEM images of experimental steels by different cooling rates (LM-lath martensite; LB-lath bainite; GB-granular bainite; F- ferrite; PAGB-prior austenite grain boundary). (a) 100℃/s (b) 20℃/s (c) 10℃/s (d) 5℃/s (e) 2℃/s (f) 1℃/s (g) 0.5℃/s (h) 0.2℃/s (i) 0.02℃/s
Fig.3  Locally magnified SEM images of the zones marked by solid lines in Fig.2. (Fig.3a is the magnified image of the zone ‘A’ in Fig.2a. Fig.3b is the magnified image of the zone ‘B’ in Fig.2c. Figs.3c and 3d are the magnified images of the zones ‘C’ and ‘D’ in Fig.2h, respectively. Figs.3e~g are the magnified images of the zones ‘E’, ‘F’ and ‘G’ in Fig.2i, respectively)
Fig.4  SEM images of tempered experimental steels after cooling by water (a, b), oil (c, d), air (e~g) and furnace (h~j), respectively. Fig.4b is the magnified image of the zone ‘A’ in Fig.4a. Fig.4d is the magnified image of the zone ‘B’ in Fig.4c. Figs.4f and 4g are magnified images of the zones ‘C’ and ‘D’ in Fig.4e, respectively. Figs.4i and 4j are magnified images of the zones ‘E’ and ‘F’ in Fig.4h (LMT-tempered lath martensite; LBT-tempered lath bainite; GBT-tempered granular bainite; F-ferrite)
Fig.5  Calculated phase volume percentage of experimental steels against tempering time at 630℃
Fig.6  CCT diagrams of experimental steels
Fig.7  Grain boundary distribution maps of experimental steels after cooling by water (a), oil (b), air (c) and furnace (d) (Boundaries are indicated by three color solid lines, with red line being misorientation of 2~15°, black line 15~50°, and blue line >50° and Green areas in Fig.7c and d represent retained austensite)
Fig.8  Grain boundary distribution maps of tempered experimental steels after cooling by water (a), oil (b), air (c) and furnace (d) (Boundaries are indicated by three color solid lines, with red line being misorientation of 2~15°, black line 15~50°, and blue line >50° and Green areas in Fig.8c and Fig.8d represent retained austensite)
Fig.9  Relationship between prior austenite grain sizes, the effective grain sizes before and after tempered and the cooling ways for experimental steels
Fig.10  Relationship between yield strength, tensile strength, elongation at room temperature, impact energy at -60℃ after tempered and the cooling ways for experimental steels
Fig.11  SEM fractographs of Charpy impact samples of tempered experimental steels after cooling with different way (The zones marked by dotted lines are cleavage areas. Figs.11b, d, f, h are magnified images of the zones marked by dotted lines in Figs.11a, c, e, g, respectively)
1 Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, 1, 1
刘振宇, 唐 帅, 陈 俊 等. 海洋平台用钢的研发生产现状与发展趋势[J]. 鞍钢技术, 2015, 1: 1
2 Wu T, Wu D Z, Ye J J, et al. Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform [J]. Wide Heavy Plate, 2015, 21(3): 1
吴 涛, 吴东召, 叶建军 等. 自升式海洋平台齿条用177.8 mm厚度钢板的研制开发[J]. 宽厚板, 2015, 21(3): 1
3 Wang Q H, Ye Q B, Wang Z D, et al. Thickness effect on microstructure, strength, and toughness of a quenched and tempered 178 mm thickness steel plate [J]. Metals, 2020, 10(5): 572
doi: 10.3390/met10050572
4 Hong S, Song J, Kim M C, et al. Effects of microstructural variation on charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel [J]. Met. Mater. Int., 2016, 22(2): 196
doi: 10.1007/s12540-016-5568-x
5 Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform [J]. Acta Metall. Sin., 2020, 56(9): 1227
张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应 [J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
6 Gao Z Y. Study of hot deformtation behavior and microstructure evolution of HSLA ultra-heavy plate steel [D]. Beijing: University of Science and Technology Beijing, 2016
高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D]. 北京: 北京科技大学, 2016
7 Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
doi: 10.1016/j.actamat.2017.11.036
8 Wu B B, Wang Z Q, Yu Y S, et al. Thermodynamic basis of twin-related variant pair in high strength low alloy steel [J]. Scr. Mater., 2019, 170: 43
doi: 10.1016/j.scriptamat.2019.05.016
9 Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
10 Hofer C, Bliznuk V, Verdiere A, et al. High-resolution characterization of the martensite-austenite constituent in a carbide-free bainitic steel [J]. Mater. Charact., 2018, 144: 182
doi: 10.1016/j.matchar.2018.07.011
11 Fonda R W, Spanos G. Effects of cooling rate on transformations in a Fe-9 Pct Ni steel [J]. Metall. Mater. Trans., 2014, 45A: 5982
12 Thompson S W, Colvin D J, Krauss G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel [J]. Metall. Mater. Trans., 1996, 27A: 1557
13 Wen T, Hu X F, Song YY, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50(4): 447
温 涛, 胡小锋, 宋元元 等, 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50(4): 447
14 Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
15 Zhou T, Babu R P, Hou Z Y, et al. Precipitation of multiple carbides in martensitic CrMoV steels-experimental analysis and exploration of alloying strategy through thermodynamic calculations [J]. Materialia, 2020, 9: 100630
doi: 10.1016/j.mtla.2020.100630
16 Zhang S Q, Hu X F, Jiang H C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Cr-Ni-Mo-V steel [J]. Heat Treat. Met., 2018, 43(3): 177
张守清, 胡小锋, 姜海昌 等. 热处理温度对Cr-Ni-Mo-V钢组织和力学性能的影响 [J]. 金属热处理, 2018, 43(3): 177
17 Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54(19): 5323
doi: 10.1016/j.actamat.2006.07.009
18 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater. 2003: 51(6): 1789
doi: 10.1016/S1359-6454(02)00577-3
19 Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels [J]. Metall. Mater. Trans., 1979, 10A: 861
20 Wang X Y, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel [J]. Acta Metall. Sin., 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
王小勇, 潘 涛, 王华 等. Ni-Cr-Mo-B 超厚钢板表面低碳回火马氏体组织的韧性研究 [J]. 金属学报, 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
21 Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389 :176
22 Lee K H, Kim M C, Yang W J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels [J]. Mater. Sci. Eng., 2013, A565: 158
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!