Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 401-408    DOI: 10.11901/1005.3093.2021.174
ARTICLES Current Issue | Archive | Adv Search |
Effect of Nb Addition on Properties of TiZr-based Amorphous Alloys
ZHANG Yiming, ZHAO Ziyan, MU Juan()
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Sciences and Engineering, Northeastern University, Shenyang 110004, China
Cite this article: 

ZHANG Yiming, ZHAO Ziyan, MU Juan. Effect of Nb Addition on Properties of TiZr-based Amorphous Alloys. Chinese Journal of Materials Research, 2022, 36(6): 401-408.

Download:  HTML  PDF(4251KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiZr-based amorphous alloys with different Nb amount, given by (Ti45.7Zr33Ni3Cu5.8Be12.5)(1-0.01x)Nb x (x=0, 2, 4, 6, 8, and 10, denoted as Nb0, Nb2, Nb4, Nb6, Nb8, and Nb10) were prepared via copper mold casting method. Then the effect of Nb addition on the performance of the alloys was investigated by means of uniaxial compression testing, XRD, TEM and SEM+EDS. The results show that with the increasing Nb content the grain size and volume fraction of the β-phase increased, but the deformation-induced martensitic transformation was suppressed; The plasticity of the amorphous alloys was greatly improved, while the yield strength gradually decreased. Notably, the repeatability of the mechanical properties of the amorphous alloys was improved with the addition of Nb. For the amorphous alloys that may undergo deformation-induced phase transformation, such as Nb0~Nb4, homogenous α'' martensite with a small lath can effectively induce the formation of multiple shear bands. For the amorphous alloys that cannot undergo deformation-induced phase transformation, such as Nb6~Nb10, many dislocations may occur in the β-phase and they accumulated at boundaries to form dislocation steps, which would trigger the formation of multiple shear bands and finally improve the plasticity of amorphous alloys.

Key words:  composite      mechanical properties      microstructure characterization      deformation-induced phase transformation      Nb addition     
Received:  09 March 2021     
ZTFLH:  TG139.8  
Fund: National Natural Science Foundation of China(51771049);National Natural Science Foundation of China(51790484);National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(JCKYS2020602005)
About author:  MU Juan, Tel: 15326117696, E-mail: muj@atm.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.174     OR     https://www.cjmr.org/EN/Y2022/V36/I6/401

Fig.1  XRD patterns of the as-cast TiZr-based amorphous alloy composites and inset presents the enlarged regions of the (100) β peaks (a), and lattice constants of dendrite phase of the amorphous alloy composites (b)
Fig.2  SEM micrographs of the as-cast sample of TiZr-based amorphous alloy composites (a) Nb0, (b) Nb2, (c) Nb4, (d) Nb6, (e) Nb8 and (f) Nb10
AlloysNb0Nb2Nb4Nb6Nb8Nb10
Volume fraction/%495455626365
Grain size/μm273536374041
Table 1  Volume fraction and grain size of Nb0~Nb10 samples
Fig.3  EDS curves of elements content as a function of Nb content in the dendrites (a), amorphous matrix (b) and EPMA mapping results of Nb10 amorphous alloy composites (c)
Fig.4  Compressive strain-stress curves (a), the corresponding parameters gained from the s-s curves (b), work-hardening rate curve (c) and nano-indentation hardness (d) of the amorphous alloy composites
AlloysAverageStandard deviationCV/%
σ0.2/MPaσb/MPaεp/%σ0.2/MPaσb/MPaεp/%σ0.2σbεp
Nb01486.661967.764.3434.3048.670.292.312.476.60
Nb21429.521864.947.7917.1529.550.211.201.582.73
Nb41347.711751.568.8617.8244.120.961.322.5210.87
Nb61277.941860.9615.196.9826.370.720.551.424.73
Nb81222.102153.9026.6211.3320.530.550.930.952.01
Nb101266.862315.3628.8017.1743.030.591.361.862.04
Table 2  Repeatability of mechanical properties of amorphous alloy composites
Fig.5  XRD patterns of TiZr-based amorphous alloy composites after fracturing
Fig.6  Bright field TEM images of Nb2 (a) and Nb6 TiZr-based amorphous alloy composites after fracture (b), the corresponding SAED patterns (c) of the amorphous phase and the dendritic phase of the Nb2 (d) and the dendritic phase of the Nb6 (e)
Fig.7  SEM micrographs of multiple shear bands on the lateral surface of TiZr-based amorphous alloy composites after deformation (a) Nb0, (b) Nb2, (c) Nb4, (d) Nb6, (e) Nb8 and (f) Nb10
1 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
doi: 10.1016/S1359-6454(99)00300-6
2 Ma X Z, Ma D Q, Xu H, et al. Enhancing the compressive and tensile properties of Ti-based glassy matrix composites with Nb addition [J]. J. Non-Cryst. Solids, 2017, 463: 56
doi: 10.1016/j.jnoncrysol.2017.02.025
3 Zhong H, Chen J, Dai L Y, et al. Effect of counterpart material on the tribological properties of Zr-based bulk metallic glass under relatively heavy loads [J]. Wear, 2016, 346-347: 22
doi: 10.1016/j.wear.2015.10.018
4 Li Y H, Zhang W, Dong C, et al. Effects of cryogenic temperatures on mechanical behavior of a Zr60Ni25Al15 bulk metallic glass [J]. Mater. Sci. Eng., 2013, 584A: 7
5 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
pmid: 15378050
6 Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength [J]. Appl. Phys. Lett., 2003, 83: 2793
doi: 10.1063/1.1616192
7 Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass [J]. Acta Mater., 2003, 51: 1167
doi: 10.1016/S1359-6454(02)00521-9
8 Wu F F, Zhang Z F, Mao S X, et al. Effect of annealing on the mechanical properties and fracture mechanisms of a Zr56.2Ti13.8Nb5.0Cu6.9-Ni5.6Be12.5 bulk-metallic-glass composite [J]. Phys. Rev., 2007, 75B: 134201
9 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598
10 Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions [J]. Phys. Rev. Lett., 2000, 84: 2901
pmid: 11018971
11 Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
doi: 10.1073/pnas.0809000106
12 He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity [J]. Nat. Mater., 2003, 2: 33
doi: 10.1038/nmat792
13 Fan C, Li H Q, Kecskes L J, et al. Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures [J]. Phys. Rev. Lett., 2006, 96: 145506
doi: 10.1103/PhysRevLett.96.145506
14 Chen G, Bei H, Cao Y, et al. Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases [J]. Appl. Phys. Lett., 2009, 95: 081908
15 Qiao J W, Jia H L, Liaw P K. Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, 100R: 1
16 Hofmann D C. Shape memory bulk metallic glass composites [J]. Science, 2010, 329: 1294
doi: 10.1126/science.1193522
17 Wu Y, Xiao Y H, Chen G L, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
doi: 10.1002/adma.201000482
18 Wu Y, Ma D, Li Q K, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction [J]. Acta Mater., 2017, 124: 478
doi: 10.1016/j.actamat.2016.11.029
19 Oh Y S, Kim C P, Lee S, et al. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites [J]. Acta Mater., 2011, 59: 7277
doi: 10.1016/j.actamat.2011.08.006
20 Mu J, Zhu Z W, Su R, et al. In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites [J]. Acta Mater., 2013, 61: 5008
doi: 10.1016/j.actamat.2013.04.045
21 Szuecs F, Kim C P, Johnson W L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite [J]. Acta Mater., 2001, 49: 1507.
doi: 10.1016/S1359-6454(01)00068-4
22 Chu M Y, Jiao Z M, Wu R F, et al. Quasi-static and dynamic deformation behaviors of an in-situ Ti-based metallic glass matrix composite [J]. J. Alloys Compd., 2015, 640: 305
doi: 10.1016/j.jallcom.2015.03.253
23 Ma D Q, Jiao W T, Zhang Y F, et al. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites [J]. J. Alloys Compd., 2015, 624: 9
doi: 10.1016/j.jallcom.2014.11.099
24 Liu D M, Zhu Z W, Li Z K, et al. Modulating work-hardening behaviors and tensile plasticity of in-situ formed ductile dendrite Ti-based bulk metallic glass composites with tailored dendrite composition [J]. Scr. Mater., 2018, 146: 22
doi: 10.1016/j.scriptamat.2017.11.001
25 Xia S H, Wang J T. A micromechanical model of toughening behavior in the dual-phase composite [J]. Int. J. Plast., 2010, 26: 1442
doi: 10.1016/j.ijplas.2010.01.005
26 Sha P F, Zhu Z W, Fu H M, et al. Effects of casting temperature on the microstructure and mechanical properties of the TiZr-based bulk metallic glass matrix composite [J]. Mater. Sci. Eng., 2014, 589A: 182
27 Zhang T, Ye H Y, Shi J Y, et al. Dendrite size dependence of tensile plasticity of in situ Ti-based metallic glass matrix composites [J]. J. Alloys Compd., 2014, 583: 593
doi: 10.1016/j.jallcom.2013.08.201
28 Yang J M, Zhao Z Y, Mu J, et al. Effect of pre-plastic-deformation on mechanical properties of TiZr-based amorphous alloy composites [J]. Mater. Sci. Eng., 2018, 716A: 23
29 Qiao J W, Zhang J T, Jiang F, et al. Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures [J]. Mater. Sci. Eng., 2010, 527A: 7752
30 Qiao J W, Wang S, Zhang Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification [J]. Appl. Phys. Lett., 2009, 94: 151905
doi: 10.1063/1.3118587
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[10] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[13] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[14] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[15] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
No Suggested Reading articles found!