Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 511-518    DOI: 10.11901/1005.3093.2021.166
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method
CHEN Jingjing1(), QIU Xiaolin2, LI Ke1, YUAN Junjun1, ZHOU Dan1, LIU Yiwei1
1.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
2.College of Electrical and Mechanical Engineering, Key Laboratory of Optoelectronic Material of Jiangxi Province, Nanchang 330044, China
Cite this article: 

CHEN Jingjing, QIU Xiaolin, LI Ke, YUAN Junjun, ZHOU Dan, LIU Yiwei. Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method. Chinese Journal of Materials Research, 2022, 36(7): 511-518.

Download:  HTML  PDF(3734KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure evolution and plastic removal induced by particle scratching for single crystal nickel were investigated by means of molecular dynamics simulation at the atomic level, meanwhile, the characteristics of microstructure evolution and the difference of plastic removal of different crystal surfaces were analyzed. The results show that the stress concentration in the close contact zone is not only the motivity for dislocation slip of single crystal nickel, but also the main cause of the transition from FCC structure to HCP structure and the plastic removal of the material. During abrasive particle scraping, the maximum horizontal tangential force appears on the Ni(110) crystal surface, correspondingly, the HCP structure with horizontal slip characteristics may form in the Ni(110) crystal plane, as a result, the dislocation slip may mainly be responsible to that the quantity of debris on the Ni(100) plane is more than that on the Ni(111) plane. Therefore, by the same level of particle scraping, the hysteresis of plastic ring abscission on Ni(110) crystal surface may emerge. At the same time, both the occurrence of stacking fault and the shear strain of the worn surface show remarkable crystal facet selectivity. Compared with the case of sliding scraping, the nickel atoms adhere to the outer surface of the abrasive particles significantly during rolling scraping, which is the main reason for the large oscillation of the tangential force during the scraping process.

Key words:  metallic materials      nickel substrate      mmicro-structure evolution      plastic loop      atomic simulation      plastic removal     
Received:  05 March 2021     
ZTFLH:  TH117  
Fund: University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, and Science and Technology Research Project of Educa-tion Department of Jiangxi Province(GJJ212101);University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, and Science and Technology Research Project of Educa-tion Department of Jiangxi Province(GJJ219310);Nanchang Key Laboratory Construction Project of Jiangxi Province(2020-NCZDSY-005)
About author:  CHEN Jingjing, Tel: 15750843783, E-mail: chenjingjingfzu@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.166     OR     https://www.cjmr.org/EN/Y2022/V36/I7/511

Fig.1  Atomic scale physical model between rigid abrasive particle and nickel-based (a) 3D model in horizontal scratch process, (b) YZ plane model in grinding scratch process
Physical quantityNickelRigid particle
Dimension

6 nm×10 nm×6 nm

(Lx ×Ly ×Lz )

R=4 nm
Lattice constant0.353 nm0.3567 nm
Temperature300 K
Depth2.5 nm
Time step1 fs
Scratch velocity100 m/s
Rotation period10 ps
Sliding distance8 nm
Table 1  Set of molecular dynamics parameters
Fig.2  Shear strain of different crystal surfaces of nickel specimens at a sliding distance of 8 nm
Fig.3  Snapshot of the scratch-induced shear strain for Ni(111) at different temperatures (a) top view; (b) front view
Fig.4  Variation ofchip-atoms number (a) and tangential force on Ni specimens with different crystal face with sliding distance (b), variation of chip-atoms number (c) and tangential force on Ni specimen at different temperatures (d)
Fig.5  Radial distribution function of single nickel after scratching at different temperatures (a), evolution of tangential forces under sliding and rolling actions (b) and morphologies of abrasive particles when scratching distance are 1.2 nm and 6 nm (c)
Fig.6  Evolution of micro-structure of different crystal faces scratch-induced in single crystal nickel
Fig.7  Evolution of micro-structures of different crystal faces scratch-induced in nickel specimens
Fig.8  Plastic deformation and removal of different crystal faces scratch-induced in nickel single crystal specimens
Fig.9  Relationship between HCP atomic ratio and (HCP+Other) total atom ratio and scratching distance
1 Priya B, Malhotra J. 5GAuNetS: an autonomous 5G network selection framework for Industry 4.0 [J]. Soft Comput., 2020, 24: 9507
doi: 10.1007/s00500-019-04460-y
2 Messaoud S, Bradai A, Moulay E. Online GMM clustering and mini-batch gradient descent based optimization for industrial IoT 4.0 [J]. IEEE Trans. Ind. Inform., 2020, 16: 1427
3 Niu Z C, Cheng K. An experimental investigation on surface generation in ultraprecision machining of particle reinforced metal matrix composites [J]. Int. J. Adv. Manuf. Technol., 2019, 105: 4499
doi: 10.1007/s00170-018-03256-y
4 Gao B, Zhai W J. Material removal rate of 4H-SiC polishing with polystyrene/CeO2 core/shell abrasives [J]. ECS J. Solid State Sci. Technol., 2020, 9: 104001
doi: 10.1149/2162-8777/abba03
5 Zhao K, Aghababaei R. Interfacial plasticity controls material removal rate during adhesive sliding contact [J]. Phys. Rev. Mater., 2020, 4: 103605
6 Dong Y, Lei H, Liu W Q. Effect of mixed-shaped silica sol abrasives on surface roughness and material removal rate of zirconia ceramic cover [J]. Ceram. Int., 2020, 46: 23828
doi: 10.1016/j.ceramint.2020.06.159
7 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
8 Jamie D G, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
9 Lee S, Aviral V, Im J, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Commun., 2020, 11: 2367
doi: 10.1038/s41467-020-15775-y
10 Xiang H G, Li H T, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
11 Wang J S, Zhang X D, Fang F Z, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon [J]. Appl. Surf. Sci., 2018, 455: 608
doi: 10.1016/j.apsusc.2018.05.091
12 Yue X M, Yang X D. Molecular dynamics simulation of material removal process and mechanism of EDM using a two-temperature model [J]. Appl. Surf. Sci., 2020, 528: 147009
doi: 10.1016/j.apsusc.2020.147009
13 Nguyen V T, Fang T H. Material removal and wear mechanism in abrasive polishing of SiO2/SiC using molecular dynamics [J]. Ceram. Int., 2020, 46: 21578
doi: 10.1016/j.ceramint.2020.05.263
14 Liu Y, Li B Z, Kong L F. A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide [J]. Comput. Mater. Sci., 2018, 148: 76
doi: 10.1016/j.commatsci.2018.02.038
15 Wang G L, Feng Z J, Zheng Q C, et al. Molecular dynamics simulation of nano-polishing of single crystal silicon on non-continuous surface [J]. Mater. Sci. Semicond. Process., 2020, 118: 105168
doi: 10.1016/j.mssp.2020.105168
16 Lai M, Zhang X D, Fang F Z. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation [J]. Nanoscale Res. Lett., 2013, 8: 353
doi: 10.1186/1556-276X-8-353
17 Chen J J, Weng S B, Wu H. Effects of mechanism analysis for spherical contact pair on contact deformation in copper film from nano-perspective [J]. China Surf. Eng., 2021, 34(4): 99
陈晶晶, 翁盛槟, 吴 昊. 基于球面触点接触模式的铜膜纳观变形探析 [J]. 中国表面工程, 2021, 34(4): 99
18 Sharma A, Datta D, Balasubramaniam R. Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper [J]. Comput. Mater. Sci., 2018, 153: 241
doi: 10.1016/j.commatsci.2018.07.002
19 Liu B, Fang F Z, Li R, et al. Experimental study on size effect of tool edge and subsurface damage of single crystal silicon in nano-cutting [J]. Int. J. Adv. Manuf. Technol., 2018, 98: 1093
doi: 10.1007/s00170-018-2310-5
20 Imran M, Hussain F, Rashid M, et al. Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation [J]. Chin. Phys., 2012, 21B: 126802
21 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys. Rev., 1988, 33B: 10378
22 Morse P M. Diatomic molecules according to the wave mechanics. Ⅱ: Vibrational levels [J]. Phys. Rev., 1929, 34: 57
doi: 10.1103/PhysRev.34.57
23 Qian Y, Shang F L, Wan Q, et al. A molecular dynamics study on indentation response of single crystalline wurtzite GaN [J]. J. Appl. Phys., 2018, 24: 115102
24 Li Y C, Jiang W G, Zhou Y. Molecular dynamics simulation on shear mechanical properties of single crystal/polycrystalline Ni composites [J]. Chin. J. Nonferrous Met., 2020, 30: 1837
李源才, 江五贵, 周 宇. 单晶/多晶镍复合体剪切过程分子动力学模拟 [J]. 中国有色金属学报, 2020, 30: 1837
25 Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: A molecular dynamics study [J]. Ceram. Int., 2020, 46: 12686
doi: 10.1016/j.ceramint.2020.02.035
26 Zhang Z B, Yang Z B, Lu S, et al. Strain localisation and failure at twin-boundary complexions in nickel-based superalloys [J]. Nat. Commun., 2020, 11: 4890
doi: 10.1038/s41467-020-18641-z
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!