|
|
Preparation of Small Gold Nanorods |
HU Qing1, WU Chunfang1( ), ZHANG Kaifeng2, PAN Hao1, LI Kun2 |
1.School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China 2.Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institutute of Physics, Lanzhou 730000, China |
|
Cite this article:
HU Qing, WU Chunfang, ZHANG Kaifeng, PAN Hao, LI Kun. Preparation of Small Gold Nanorods. Chinese Journal of Materials Research, 2022, 36(7): 519-526.
|
Abstract Small gold nanorods were synthesized by seed growth method. The morphology and properties of the nanorods could be controlled by changing the synthesis parameters. The extinction characteristics and morphology of gold nanorods were measured and observed by uV-vis-nIR spectrophotometer and transmission electron microscope (TEM). The effects of the amount of AgNO3, cetyltrimethyl ammonium bromide (CTAB) and seed crystal on the morphology and properties of gold nanorods were investigated. The results show that the gold nanorods prepared under different conditions have good reproducibility. The gold nanorods synthesized under the optimum conditions of 0.035 mL of (0.01 mol/L) AgNO3, 11 mL of (0.1 mol/L) CTAB and 1.1 mL of seed crystal, have an aspect ratio of about 3.8, an average length of about 34 nm, and good morphology uniformity and dispersion. The small gold nanorods could be used to detect a residue called Thiram.
|
Received: 21 December 2020
|
|
Fund: Key Laboratory for Equipment Pre-research(6142207190407);Scientific Research Program Funded by Shaanxi Provincial Education Department(21JY018) |
About author: WU Chunfang, Tel: 18710975250, E-mail: wuchf@xatu.edu.cn
|
1 |
Gu B Y. Surface plasmon subwavelength optics:principles and novel effects [J]. Phys, 2007, 36(04): 280
|
|
顾本源. 表面等离子体亚波长光学原理和新颖效应 [J]. 物理, 2007(04): 280
|
2 |
Behafarid F, Matos J, Hong S, et al. Structural and electronic properties of micellar Au nanoparticles: size and ligand effects [J]. Acs Nano, 2014, 8(7): 6671
doi: 10.1021/nn406568b
pmid: 24437393
|
3 |
Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials [J]. Nat. Rev. Mater., 2016, 1(6): 1
|
4 |
Davletshin Y R, Lombardi A, Cardinal M F, et al. A quantitative study of the environmental effects on the optical response of gold nanorods [J]. Acs Nano, 2012, 6(9): 8183
pmid: 22931408
|
5 |
Ali M R, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(28): E5655
|
6 |
Nima Z A, Alwbari A M, Dantuluri V, et al. Targeting nano drug delivery to cancer cells using tunable, multi-layer, silver-decorated gold nanorods [J]. J. Appl. Toxicol., 2017, 37(12): 1370
doi: 10.1002/jat.3495
|
7 |
Bolaños-Benítez V, McDermott F, Gill L, et al. Engineered silver nanoparticle (Ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soils [J]. Sci. Total Environ., 2020, 722(137794): 1
|
8 |
Paulo P M, Zijlstra P, Orrit M, et al. Tip-specific functionalization of gold nanorods for plasmonic biosensing: effect of linker chain length [J]. Langmuir, 2017, 33(26): 6503
doi: 10.1021/acs.langmuir.7b00422
|
9 |
Schörner C, Adhikari S, Lippitz M. A single-crystalline silver plasmonic circuit for visible quantum emitters [J]. Nano Lett., 2019, 19(5): 3238
doi: 10.1021/acs.nanolett.9b00773
|
10 |
Schlücker S. Surface-enhanced raman spectroscopy: concepts and chemical applications [J]. Angew. Chem. Int. Ed., 2014, 53(19): 4756
doi: 10.1002/anie.201205748
|
11 |
Sanzortiz M N, Sentosun K, Bals S, et al. Templated growth of surface enhanced raman scattering-active branched gold nanoparticles within radial mesoporous silica shells [J]. ACS Nano, 2015, 9(10): 10489
doi: 10.1021/acsnano.5b04744
pmid: 26370658
|
12 |
Katzmann J, Hartling T. Nanorod formation by photochemical metal deposition in nanoporous aluminum oxide templates [J]. J. Phys. Chem. C, 2012, 116(44): 23671
doi: 10.1021/jp303896a
|
13 |
Sharma M K, Ambolikar A S, Aggarwal S K, et al. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode [J]. J. Nanopart. Res., 2012, 14(9):1
|
14 |
Chang H H, Murphy C J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm [J]. Chem. Mater., 2018, 30(4): 1427
doi: 10.1021/acs.chemmater.7b05310
|
15 |
Lu W S, Wang H F, Zhang J P, et al. Gold nanorods: synthesis, growth mechanism and purification [J]. Prog. Chem., 2015, 27(07): 785
|
|
鲁闻生, 王海飞, 张建平 等. 金纳米棒的制备、生长机理及纯化 [J]. 化学进展, 2015, 27(07): 785
|
16 |
Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B, 2001, 105(19): 4065
doi: 10.1021/jp0107964
|
17 |
Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-med -iated growth method [J]. Chem. Mater., 2003, 15(10): 1957
doi: 10.1021/cm020732l
|
18 |
Jia H, Fang C, Zhu X M, et al. Synthesis of absorption-dominant small gold nanorods and their plasmonic properties [J]. Langmuir, 2015, 31(26): 7418
doi: 10.1021/acs.langmuir.5b01444
|
19 |
Huang Y J, Zhou X Y, Li Z J, et al. Seed-mediated synthesis of size-tunable and monodisperse gold nanorods through the use of anionic surfactant as additives [J]. Chinese J. Inorg. Chem., 2013, 29(06): 1141
|
|
黄颖娟, 周晓燕, 李在均 等. 阴离子表面活性剂作为添加剂种子生长法制备尺寸可调的单分散金纳米棒 [J]. 无机化学学报, 2013, 29(06): 1141
|
20 |
Koczkur K M, Mourdikoudis S, Polavarapu L, et al. Polyvinylpyrrolidone(PVP) in nanoparticle synthesis [J]. RSC, 2015, 44(41): 17883
|
21 |
Gao Q, Qian Y, Xia Y, et al. A novel method to prepare high-aspect ratio gold nanorods [J]. Acta Chim. Sinica, 2011, 69(14): 1617
|
|
高 倩, 钱 勇, 夏 炎 等. 一种制备高长径比金纳米棒的新方法 [J]. 化学学报, 2011, 69(14): 1617
|
22 |
Pastorello M, Sigoli F A, Dos Santos D P, et al. On the use of Au@Ag core-shell nanorods for SERS detection of thiram diluted solutions [J]. Spectrochim. Acta A, 2020, 231(118113): 1
|
23 |
Yu Y, Zeng P, Yang C, et al. Gold nanorod-coated capillaries for the SERS-based detection of thiram [J]. Acs Appl. Nano Mater., 2019, 2(1): 598
doi: 10.1021/acsanm.8b02075
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|