Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 519-526    DOI: 10.11901/1005.3093.2020.542
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Small Gold Nanorods
HU Qing1, WU Chunfang1(), ZHANG Kaifeng2, PAN Hao1, LI Kun2
1.School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China
2.Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institutute of Physics, Lanzhou 730000, China
Cite this article: 

HU Qing, WU Chunfang, ZHANG Kaifeng, PAN Hao, LI Kun. Preparation of Small Gold Nanorods. Chinese Journal of Materials Research, 2022, 36(7): 519-526.

Download:  HTML  PDF(14213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Small gold nanorods were synthesized by seed growth method. The morphology and properties of the nanorods could be controlled by changing the synthesis parameters. The extinction characteristics and morphology of gold nanorods were measured and observed by uV-vis-nIR spectrophotometer and transmission electron microscope (TEM). The effects of the amount of AgNO3, cetyltrimethyl ammonium bromide (CTAB) and seed crystal on the morphology and properties of gold nanorods were investigated. The results show that the gold nanorods prepared under different conditions have good reproducibility. The gold nanorods synthesized under the optimum conditions of 0.035 mL of (0.01 mol/L) AgNO3, 11 mL of (0.1 mol/L) CTAB and 1.1 mL of seed crystal, have an aspect ratio of about 3.8, an average length of about 34 nm, and good morphology uniformity and dispersion. The small gold nanorods could be used to detect a residue called Thiram.

Key words:  metallic materials      gold nanorods      seed-mediated growth method      aspect ratio      thiram     
Received:  21 December 2020     
ZTFLH:  TB31  
Fund: Key Laboratory for Equipment Pre-research(6142207190407);Scientific Research Program Funded by Shaanxi Provincial Education Department(21JY018)
About author:  WU Chunfang, Tel: 18710975250, E-mail: wuchf@xatu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.542     OR     https://www.cjmr.org/EN/Y2022/V36/I7/519

Fig.1  A Schematic diagram for the preparation of gold seed solution
Fig.2  A schematic illustration of the synthesis of growth solution
Fig.3  Absorption spectra of gold nanorods prepared with different amounts (0.035、0.065、0.08、0.1 mL) of AgNO3
Fig.4  TEM images of gold nanorods synthesized by different contents (a: 0.035 mL、b: 0.065 mL、c: 0.08 mL、d: 0.1 mL) of AgNO3 (Scale bars: 100 nm)
0.01 mol/L AgNO3 /mL

Length

/nm

Diameter

/nm

Aspect ratio

(R=L/D)

Longitudinal SPR

/nm

Yield

/%

0.03544.510.54.285796
0.06539.19.64.184898
0.0838.29.73.983294
0.132.98.93.781390
Table 1  Effect of AgNO3 contents on length, diameter, aspect ratio, longitudinal SPR and yield of gold nanorods
Fig.5  Absorption spectra of gold nanorods prepared with different amounts (0.65 mL、0.8 mL、1 mL、1.1 mL) of seed
Fig.6  TEM images of gold nanorods synthesized by different contents (a: 0.65 mL、b: 0.8 mL、c: 1 mL、d: 1.1 mL) of seed (Scale bars: 100 nm)

Au seed

/mL

Length

/nm

Diameter

/nm

Aspect ratio

(R=L/D)

Longitudinal SPR

/nm

Yield

/%

0.6539.69.54.285599
0.838.59.83.983895
132.78.93.781490
1.129.98.33.680998
Table 2  Effect of seeds contents on length, diameter, aspect ratio, longitudinal SPR and yield of gold nanorods
Fig.7  Absorption spectra of gold nanorods prepared with different amounts (7 mL、9 mL、11 mL、13 mL) of CTAB
Fig.8  TEM images of gold nanorods synthesized by different contents (a: 7 mL、b: 9 mL、c: 11 mL、d: 13 mL) of CTAB (Scale bars: 100 nm)

0.1 mol/L CTAB

/mL

Length

/nm

Diameter

/nm

Aspect

ratio

(R=L/D)

Longitudinal SPR

/nm

Yield

/%

733.99.23.781596
932.78.63.882287
1135.59.13.983789
1336.69.33.984393
Table 3  Effect of CTAB amounts on length, diameter, aspect ratio, longitudinal SPR and yield of gold nanorods
Fig.9  Absorption spectrum of gold nanorods prepared under optimized conditions
Fig.10  TEM images of gold nanorods prepared under optimized conditions
Fig.11  Length distribution histogram of gold nanorods
Fig.12  Roman enhanced spectrum of different concentrations of thiram solution on gold nanorods substrate (a) and the relationship between the intensity of the 1374 cm-1 peak and thiram concentrations (b)
1 Gu B Y. Surface plasmon subwavelength optics:principles and novel effects [J]. Phys, 2007, 36(04): 280
顾本源. 表面等离子体亚波长光学原理和新颖效应 [J]. 物理, 2007(04): 280
2 Behafarid F, Matos J, Hong S, et al. Structural and electronic properties of micellar Au nanoparticles: size and ligand effects [J]. Acs Nano, 2014, 8(7): 6671
doi: 10.1021/nn406568b pmid: 24437393
3 Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials [J]. Nat. Rev. Mater., 2016, 1(6): 1
4 Davletshin Y R, Lombardi A, Cardinal M F, et al. A quantitative study of the environmental effects on the optical response of gold nanorods [J]. Acs Nano, 2012, 6(9): 8183
pmid: 22931408
5 Ali M R, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(28): E5655
6 Nima Z A, Alwbari A M, Dantuluri V, et al. Targeting nano drug delivery to cancer cells using tunable, multi-layer, silver-decorated gold nanorods [J]. J. Appl. Toxicol., 2017, 37(12): 1370
doi: 10.1002/jat.3495
7 Bolaños-Benítez V, McDermott F, Gill L, et al. Engineered silver nanoparticle (Ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soils [J]. Sci. Total Environ., 2020, 722(137794): 1
8 Paulo P M, Zijlstra P, Orrit M, et al. Tip-specific functionalization of gold nanorods for plasmonic biosensing: effect of linker chain length [J]. Langmuir, 2017, 33(26): 6503
doi: 10.1021/acs.langmuir.7b00422
9 Schörner C, Adhikari S, Lippitz M. A single-crystalline silver plasmonic circuit for visible quantum emitters [J]. Nano Lett., 2019, 19(5): 3238
doi: 10.1021/acs.nanolett.9b00773
10 Schlücker S. Surface-enhanced raman spectroscopy: concepts and chemical applications [J]. Angew. Chem. Int. Ed., 2014, 53(19): 4756
doi: 10.1002/anie.201205748
11 Sanzortiz M N, Sentosun K, Bals S, et al. Templated growth of surface enhanced raman scattering-active branched gold nanoparticles within radial mesoporous silica shells [J]. ACS Nano, 2015, 9(10): 10489
doi: 10.1021/acsnano.5b04744 pmid: 26370658
12 Katzmann J, Hartling T. Nanorod formation by photochemical metal deposition in nanoporous aluminum oxide templates [J]. J. Phys. Chem. C, 2012, 116(44): 23671
doi: 10.1021/jp303896a
13 Sharma M K, Ambolikar A S, Aggarwal S K, et al. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode [J]. J. Nanopart. Res., 2012, 14(9):1
14 Chang H H, Murphy C J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm [J]. Chem. Mater., 2018, 30(4): 1427
doi: 10.1021/acs.chemmater.7b05310
15 Lu W S, Wang H F, Zhang J P, et al. Gold nanorods: synthesis, growth mechanism and purification [J]. Prog. Chem., 2015, 27(07): 785
鲁闻生, 王海飞, 张建平 等. 金纳米棒的制备、生长机理及纯化 [J]. 化学进展, 2015, 27(07): 785
16 Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B, 2001, 105(19): 4065
doi: 10.1021/jp0107964
17 Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-med -iated growth method [J]. Chem. Mater., 2003, 15(10): 1957
doi: 10.1021/cm020732l
18 Jia H, Fang C, Zhu X M, et al. Synthesis of absorption-dominant small gold nanorods and their plasmonic properties [J]. Langmuir, 2015, 31(26): 7418
doi: 10.1021/acs.langmuir.5b01444
19 Huang Y J, Zhou X Y, Li Z J, et al. Seed-mediated synthesis of size-tunable and monodisperse gold nanorods through the use of anionic surfactant as additives [J]. Chinese J. Inorg. Chem., 2013, 29(06): 1141
黄颖娟, 周晓燕, 李在均 等. 阴离子表面活性剂作为添加剂种子生长法制备尺寸可调的单分散金纳米棒 [J]. 无机化学学报, 2013, 29(06): 1141
20 Koczkur K M, Mourdikoudis S, Polavarapu L, et al. Polyvinylpyrrolidone(PVP) in nanoparticle synthesis [J]. RSC, 2015, 44(41): 17883
21 Gao Q, Qian Y, Xia Y, et al. A novel method to prepare high-aspect ratio gold nanorods [J]. Acta Chim. Sinica, 2011, 69(14): 1617
高 倩, 钱 勇, 夏 炎 等. 一种制备高长径比金纳米棒的新方法 [J]. 化学学报, 2011, 69(14): 1617
22 Pastorello M, Sigoli F A, Dos Santos D P, et al. On the use of Au@Ag core-shell nanorods for SERS detection of thiram diluted solutions [J]. Spectrochim. Acta A, 2020, 231(118113): 1
23 Yu Y, Zeng P, Yang C, et al. Gold nanorod-coated capillaries for the SERS-based detection of thiram [J]. Acs Appl. Nano Mater., 2019, 2(1): 598
doi: 10.1021/acsanm.8b02075
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!