Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (10): 732-740    DOI: 10.11901/1005.3093.2020.551
ARTICLES Current Issue | Archive | Adv Search |
Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze
YANG Dongya1, LI Weitao1, WANG Honggang2(), GAO Gui1,2, CHENG Shengsheng2, REN Junfang2, TIAN Song1
1.School of Mechanical and Electrical Eng. , Lanzhou Univ. of Technol. , Lanzhou 730050, China
2.State Key Lab. of Solid Lubrication Lanzhou Inst. of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Cite this article: 

YANG Dongya, LI Weitao, WANG Honggang, GAO Gui, CHENG Shengsheng, REN Junfang, TIAN Song. Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze. Chinese Journal of Materials Research, 2021, 35(10): 732-740.

Download:  HTML  PDF(21911KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of surface roughness of steel ring (GCr15) as a counterpart of the friction pair on the wear of bismuth bronze (CuSn10Bi3) under oil lubrication condition was investigated by MRH-3 ring-block friction and wear tester. While the friction surfaces at different wear stages were characterized by means of scanning electron microscopy (SEM) and three-dimensional profiler. The oil particle size was analyzed and the friction process of the micro-convex body was numerically simulated, and the wear mechanism of CuSn10Bi3 was revealed from the microscopic point of view by combining experiment and simulation. The results show that: The roughness of the steel ring surface has a significant effect on the wear process of bismuth bronze. When the roughness of the steel ring Ra increases from 0.01 to 0.8, the tribological performance indexes increase by about 2 times, the size of the wear debris generated in the whole process increases by 1.5 times, the time experienced in the running-in wear stage and the severe wear stage increases by 0.7 times, and the time experienced in the stable wear stage decreases by 0.4 times.

Key words:  metal material      Bi bronze      roughness of dual ring      wear mechanism      numerical simulation     
Received:  22 December 2020     
ZTFLH:  TH142.2  
Fund: National Natural Science Foundation of China(51675509)
About author:  WANG Honggang, Tel: (0931)4968022, E-mail: hgwang @ licp.cas.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.551     OR     https://www.cjmr.org/EN/Y2021/V35/I10/732

Fig.1  Sintering process of Bi bronze
Sampleρ/(g·cm-3)Density/%Hardness/HBCompression strength/MPaCrushing strength/MPa
10%(Strain)20%(Strain)30%(Strain)
CuSn10Bi38.9793.458.6159231282367
Table 1  Mechanical properties of CuSn10Bi3
Fig.2  SEM and EDS images of CuSn10Bi3: (a) SEM; (b) Cu; (c) Sn; (d) Bi
Fig.3  Schematic diagram of the tester
Fig.4  Effect of surface roughness on Tribological Properties of CuSn10Bi3: (a) Friction coefficient; (b) Wear volume; (c) Wear rate
Fig.5  Particle size distribution
ItemWear StageTest1Test2Test3
Maximum abrasive size/μmI11.6913.5415.68
II8.728.729.90
III21.0328.2137.83
Table 2  Maximum diameter wear particle size in each stage
Fig.6  Finite element simulation results
Surface roughnessR1/μmR2/μma/μmIllustration
Ra0.01(Test1)502511.89Fig.6(c)(d)
Ra0.1(Test2)5013.68Fig.6(e)(f)
Ra0.8(Test3)10015.72Fig.6(g)(h)
Table 3  Three groups of simulation data and results
Fig.7  Surface topography of counterpart ring and block sample in test 1: (a) Ring, Stage I; (b) Block, Stage I; (c) Ring, Stage II; (d) Block, Stage II; (e) Ring, Stage III; (f) Block, Stage III; (g) Block Stage I; (h) Block,Stage II; (i) Block Stage III
Fig.8  Surface topography of counterpart ring and block sample in test 2: (a) Ring, Stage I; (b) Block, Stage I; (c) Ring, Stage II; (d) Block, Stage II; (e) Ring, Stage III; (f) Block, Stage III; (g) Block Stage I; (h) Block,Stage II; (i) Block Stage III
Fig.9  Element distribution on worn surface of block sample in stage III of test 2
Fig.10  Surface topography of counterpart ring and block sample in test 3 (a) Ring, Stage I; (b) Block, Stage I; (c) Ring, Stage II; (d) Block, Stage II; (e) Ring, Stage III; (f) Block, Stage III; (g) Block Stage I; (h) Block,Stage II; (i) Block Stage III
1 Guo Z W, Yuan C Q, Liu Ai X, et al. Study on tribological properties of novel biomimetic material for water-lubricated stern tube bearing [J]. Wear, 2017, s376-377: 911
2 Pelosi M. An investigation of the fluid-structure interaction of piston/cylinder interface [J]. Dissertations & Theses-Gradworks, 2012
3 Du Z L, Zhang Y M, Wang Y Y, et al. Reliability sensitivity analysis of hydraulic axial piston pump volumetric efficiency [J]. Journal of Harbin Institute of Technology, 2020, v.52(07): 185
杜尊令, 张义民, 王悦勇. 液压轴向柱塞泵容积效率可靠性灵敏度分析 [J]. 哈尔滨工业大学学报, 2020, v.52(07): 185
4 Sedlaek M, Podgornik B, Viintin J. Influence of surface preparation on roughness parameters, friction and wear [J]. Wear, 2009, 266(3): 482
5 Schuhler G, Jourani A, Bouvier S, et al. Efficacy of coatings and thermochemical treatments to improve wear resistance of axial piston pumps [J]. Tribol. Int., 2018:S0301679X18302354
6 Ivantysynova M, Lasaar R. An Investigation into Micro- and Macrogeometric Design of Piston/Cylinder Assembly of Swash Plate Machines [J]. Int. J. Comput. Fluid. D., 2004, 5(1): 23
7 Ma X, Wang Q J, Lu X, et al. A transient hydrodynamic lubrication model for piston/cylinder interface of variable length [J]. Tribol. Int., 2018, 118: 227
8 Ma X, Wang Q J, Lu X, et al. Piston surface design to improve the lubrication performance of a swash plate pump [J]. Tribol. Int., 2019, 132: 275
9 Pelosi M, Ivantysynova M. Surface deformations enable high pressure operation of axial piston pumps[C]//Dynamic Systems and Control Conference. 2011, 54754: 193
10 Li X L, Yue W, Huang F, et al. Effect of Wear Particle Size on Dry Tribological Properties of Surface Texturing Titanium [J]. Chin. J. Mech. Eng.-en., 2017, 53(024): 25
李星亮, 岳文, 黄飞等. 磨料粒度对表面微织构纯钛干摩擦性能的影响 [J]. 机械工程学报, 2017, 53(024): 25
11 Gao G, Li R H, Gong J, et al. Effect of Counterpart Surface Roughness on the Tribological Properties of Nano-SiO2 Modified PTFE Composites [J]. Adv. Eng. Sci., 2020,52(02): 207
高贵, 李瑞红, 龚俊等. 对偶表面粗糙度对Nano-SiO2改性PTFE复合材料摩擦学性能的影响 [J]. 工程科学与技术, 2020, 52(02): 207
12 Grabon W, Koszela W, Pawlus P, et al. Improving tribological behaviour of piston ring-cylinder liner frictional pair by liner surface texturing [J]. Tribol. Int., 2013, 61: 102
13 Hong Y S, Lee S Y, Kim S H, et al. Improvement of the low-speed friction characteristics of a hydraulic piston pump by PVD-coating of TiN [J]. J. M. Sci. Technol., 2006, 20(3): 358
14 Hanief M., Wani, M F. Effect of surface roughness on wear rate during running-in of En31-steel: Model and experimental validation [J]. Mater. Lett., 2016
15 Johansson S, Nilsson P H, Ohlsson R, et al. Experimental friction evaluation of cylinder liner/piston ring contact [J]. Wear, 2011, 271(3): 625
16 Han F L, Jia C C. Sintered Metal Oil Bearing: Principle, Design, Manufacture And Application [M]. Beijing: Chemical Industry Press Industrial Equipment and Information Engineering Publishing Center, 2004
韩凤麟, 贾成厂. 烧结金属含油轴承: 原理、设计、制造与应用 [M]. 北京: 化学工业出版社工业装备与信息工程出版中心, 2004
17 Xue Y, Chen J, Guo S, et al. Finite element simulation and experimental test of the wear behavior for self-lubricating spherical plain bearings [J]. Friction, 2018, 6(3): 297
18 Dang X W. The Research on Fatigue Wear Mechanism Based on 35CrMo/GCr15 Friction Pair [D]. Lanzhou: Lanzhou University of Technology, 2017
党兴武. 基于35CrMo/GCr15摩擦副的疲劳磨损机理研究 [D]. 兰州: 兰州理工大学, 2017
19 Kalin M, Velkavrh I, Vižintin J. The Stribeck curve and lubrication design for non-fully wetted surfaces [J]. Wear, 2009, 267(5-8): 1232
20 Guo F, Peng X L, Fei Y W, et al. Analysis on Viscosity Degradation for Aero-engine Lubricant Oil [J]. Guangzhou Chemical Industry, 2015, 43(7): 52
郭峰, 彭兴隆, 费逸伟等. 航空润滑油运动黏度影响因素分析 [J]. 广州化工, 2015, 43(7): 52
21 Zhu C, Wang S, Wu Z, et al. Effect of Trace Silver on Precipitation Behavior of Strengthening Phases and Mechanical Properties of Aluminum-Copper Alloys [J]. JOM: the journal of the Minerals, Metals & Materials Society, 2020(2)
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[3] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[4] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[5] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[6] YU Jiaying, YANG Xixiang, ZHAN Desong, YANG Ke, REN Ling, WANG Jingren, XU Jiawei. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy[J]. 材料研究学报, 2021, 35(11): 873-880.
[7] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[8] Tuo ZHANG,Lvdan TENG,Qiyu ZANG,Yitao YANG. Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel[J]. 材料研究学报, 2019, 33(4): 313-320.
[9] Tong LIU, Ruiming SU, Yingdong QU, Junhua YOU, Yanhua BAI, Rongde LI. Effect of Laser Heat Treatment on Microstructure and Mechanical Property of 7075 Al-alloy[J]. 材料研究学报, 2018, 32(4): 263-270.
[10] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[11] Qingsheng LIU, Shaojun ZENG, Dancheng ZHANG. Numerical Analysis in Mesoscopic Scale and Experimental Verification for Sodium Expansion Induced Stress of Cathode Carbon Blocks[J]. 材料研究学报, 2017, 31(9): 703-713.
[12] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
[13] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[14] LI Yingfei, TIAN Na, FAN Xiaodong, YOU Caiyin. Influence of Dy2O3 Doping on Coercivity of Mechanically Milled Nd2Fe14B/α-Fe Composite Magnets[J]. 材料研究学报, 2016, 30(2): 95-98.
[15] Zengbin YIN,Juntang YUAN,Lei HUANG,Zhenhua WANG. Friction and Wear Properties of Al2O3-based Micro-nano-composite Ceramic Tool Materials[J]. 材料研究学报, 2016, 30(10): 753-758.
No Suggested Reading articles found!