|
|
Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites |
WANG Yankun1, WANG Yu1( ), JI Wei2, WANG Zhihui2, PENG Xiangfei1, HU Yuxiong1, LIU Bin1, XU Hong1, BAI Peikang1 |
1.School of materials science and engineering, North University of China, Taiyuan 030000, China 2.Inner Mongolia Metal Material Research Institute, Yantai 264000, China |
|
Cite this article:
WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites. Chinese Journal of Materials Research, 2022, 36(7): 536-544.
|
Abstract Carbon fibre-reinforced aluminium laminates was prepared by vacuum hot pressing diffusion with 1060 series aluminum as matrix and nickel plated carbon fiber as reinforcement in this paper. The effects of preparation parameters (heating temperature, holding time, pressure) and carbon fiber volume fraction on the microstructure, interfacial bonding, mechanical strength and fracture morphology of Carbon fibre-reinforced aluminium laminates were investigated. The results show that the interface between carbon fiber and aluminum matrix is well bonded, and the nickel coating and aluminum matrix react near the carbon fiber to form Al3Ni, which effectively prevents the formation of brittle phase Al4C between aluminum matrix and carbon fiber. With the increase of carbon fiber volume fraction, the bending strength first increases and then decreases.
|
Received: 26 July 2021
|
|
Fund: Shanxi Provincial General Youth Fund Project(201801D221148);Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(2020L0319);Special Fund for Stability Support of the State Administration of Science, Technology and Industry for National Defense-the Open Innovation Project of the Fifth Five Institute of Ordnance(JB11-12);Key Research and Development Program of Anhui Province(202004A05020070);International Science and Technology Cooperation Project of Shanxi Provincial Key R & D Plan(201903D421080) |
About author: WANG Yu, Tel: 15035198712, E-mail: wangyu@nuc.edu.cn
|
1 |
Vogelesang L, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1
doi: 10.1016/S0924-0136(00)00411-8
|
2 |
Sinmazçelik T, Avcu E, Bora M O, et al. A review: fibre metal laminates, background, bonding types and applied test methods [J]. Materials & Design, 2011, 32(7): 3671
doi: 10.1016/j.matdes.2011.03.011
|
3 |
Moriniere F D, AlderliestenR C, Sadighi M, et al. An intergrated study on the low-velocity impact response of the GLARE fiber-metal laminate [J]. Composite Structures, 2013, 100(6): 89
doi: 10.1016/j.compstruct.2012.12.016
|
4 |
Kaboglu C, Mohagheghian I, Zhou J, et al. High-velocity impact deformation and perforation of fibre metal laminates [J]. Journal of Materials Science, 2018, 53(6): 4209
doi: 10.1007/s10853-017-1871-2
|
5 |
Cortes P, Cantell W J. The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber-metal laminates [J]. Journal of Reinforced Plastics & Composites, 2004, 23(15): 1615
|
6 |
Yu G C, Wu L J, Ma L, et al. Low velocity impact of carbon fiber aluminium laminates [J]. Composite Structures, 2015, 119: 757
doi: 10.1016/j.compstruct.2014.09.054
|
7 |
Dhaliwal G S, Newaz G M. Compression after impact characteristics of carbon fiber reinforced aluminum laminates [J]. Composite Structures, 2017, 160: 1212
doi: 10.1016/j.compstruct.2016.11.015
|
8 |
Xue J, Wang W X, Zhang J Z, et al. Progressive failure analysis of the fiber metal laminates based on chopped carbon fiber strands [J]. Journal of Reinforced Plastics & Composites, 2015, 34: 364
|
9 |
Lin Y, Huang Y X, Huang T, et al. Open-hole tensile behavior and failure prediction of carbon fibre reinforced aluminium laminates [J]. Polymer Composites, 2018, 39(11): 4123
doi: 10.1002/pc.24477
|
10 |
Jiang H Y, Ren Y R, Xiang J W. A numerical study on the energy-absorption of fibre metal laminate conical frusta under quasi-static compression loading [J]. Thin-Walled Structures, 2018, 124: 278
doi: 10.1016/j.tws.2017.12.020
|
11 |
Banat D, Mania R J. Progressive failure analysis of thin-walled fibre metal laminate columns subjected to axial compression [J]. Thin-Walled Structures, 2018, 122: 52
doi: 10.1016/j.tws.2017.09.034
|
12 |
Bieniaś J, Jakubczak P, Surowska B, et al. Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminum hybrid laminates [J]. Archives of Civil and Mechanical Engineering, 2015, 15(4): 925
doi: 10.1016/j.acme.2014.09.007
|
13 |
Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials [J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1123
doi: 10.1016/1359-835X(96)00074-7
|
14 |
Li H G, Xu Y W, Hua H G, et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences [J]. Composite Structures, 2018, 187: 354
doi: 10.1016/j.compstruct.2017.12.068
|
15 |
Sadighi M, Dariushi S. Effect of fiber orientation and stacking sequence on bending properties of fiber/metal laminates [C]// Asme International Mechanical Engineering Congress & Exposition. 2008
|
16 |
Liu C, Du D D, Li H G, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point bending load [J]. Composites Part B Engineering, 2016, 97: 361
doi: 10.1016/j.compositesb.2016.05.003
|
17 |
Ostapiuk M, Surowska B, Bienias J, et al. Structure characteristics in glass/aluminium hybrid laminates after bending strength test [J]. Polskie Towarzystwo Materiaów Kompozytowych, 2013, 3: 237
|
18 |
Dhaliwal G S, Newaz G M. Experimental and numerical investigation of flexural behaviour of carbon fiber reinforced aluminium laminates [J]. Journal of Reinforced Plastics & Composites, 2016: 32
|
19 |
Nurhaniza M, Ariffin M K A M, Mustapha F, et al. Flexural analysis of aluminium/carbon-epoxy fiber metal laminates [J]. Australian Journal of Basic and Applied Sciences, 2015, 9(19): 35
|
20 |
Osapiuk M, Bienias J, Surowska B. Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers [J]. Science & Engineering of Composite Materials, 2018, 25(6): 1095
|
21 |
Zhang J J. Fabrication of woven carbon fibers reinforced Al-matrix composites and analysis of the corresponding infiltration mechanism [D]. Dalian University of Technology, 2018
|
|
张峻嘉. 碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究 [D]. 大连理工大学, 2018
|
22 |
Tavoosi M. Fabrication and thermal characterization of amorphous and nanocrystalline Al9FeNi/Al3Ti compound [J]. Materials Chemistry & Physics, 2017, 186(15): 14
|
23 |
Lin C, Kao P. Fatigue delamination growth in carbon fibre-reinforced aluminium laminates [J]. Composites Part A Applied Science & Manufacturing, 1996, 27(1): 9
|
24 |
Lin C, Kao P. Delamination growth and its effect on crack propagation in carbon fiber reinforced aluminum laminates under fatigue loading [J]. Acta Materialia, 1996, 44(3): 1181
doi: 10.1016/1359-6454(95)00182-4
|
25 |
Lin C, Kao P. Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates [J]. Materials Science & Engineering A, 1995, 190(1-2): 65
|
26 |
Pippel E, et al. Interlayer structure of carbon fibre reinforced aluminium wires [J]. Journal of Materials Science, 2000, 35(9): 2279
doi: 10.1023/A:1004787112162
|
27 |
Yang J, Pickard S M, Cady C, et al. The stress/strain behavior of aluminum matrix composites with discontinuous reinforcements [J]. Acta Metallurgica Et Materialia, 1991, 39(8): 1863
doi: 10.1016/0956-7151(91)90155-T
|
28 |
Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion [J]. Materials Science and Engineering, 1986, 81(1-2): 175
doi: 10.1016/0025-5416(86)90261-2
|
29 |
Liu Y, Wang H. Preparation and performance of continuous carbon-fiber reinforced aluminum matrix composites [J]. Foundry Technology, 2018, 39(6): 1202
|
|
刘 艺, 王 华. 连续碳纤维增强铝基复合材料的制备与性能研究 [J]. 铸造技术, 2018, 39(6): 1202
|
30 |
Wang M, Qu Y D, Li G L, et al. Microstructure and properties of short nickel coated carbon fibers reinforced aluminum matrix composites [J]. Special Casting and Nonferrous Alloy, 2017, 37(10): 1117
|
|
王 敏, 曲迎东, 李广龙 等. 镀镍短碳纤维增强铝基复合材料的组织及性能 [J]. 特种铸造及有色合金, 2017, 37(10): 1117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|