Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 536-544    DOI: 10.11901/1005.3093.2021.421
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites
WANG Yankun1, WANG Yu1(), JI Wei2, WANG Zhihui2, PENG Xiangfei1, HU Yuxiong1, LIU Bin1, XU Hong1, BAI Peikang1
1.School of materials science and engineering, North University of China, Taiyuan 030000, China
2.Inner Mongolia Metal Material Research Institute, Yantai 264000, China
Cite this article: 

WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites. Chinese Journal of Materials Research, 2022, 36(7): 536-544.

Download:  HTML  PDF(18906KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon fibre-reinforced aluminium laminates was prepared by vacuum hot pressing diffusion with 1060 series aluminum as matrix and nickel plated carbon fiber as reinforcement in this paper. The effects of preparation parameters (heating temperature, holding time, pressure) and carbon fiber volume fraction on the microstructure, interfacial bonding, mechanical strength and fracture morphology of Carbon fibre-reinforced aluminium laminates were investigated. The results show that the interface between carbon fiber and aluminum matrix is well bonded, and the nickel coating and aluminum matrix react near the carbon fiber to form Al3Ni, which effectively prevents the formation of brittle phase Al4C between aluminum matrix and carbon fiber. With the increase of carbon fiber volume fraction, the bending strength first increases and then decreases.

Key words:  composites      carbon fiber/aluminum laminated composites      three point bending      fabrication process      interface microstructure     
Received:  26 July 2021     
ZTFLH:  TB333  
Fund: Shanxi Provincial General Youth Fund Project(201801D221148);Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(2020L0319);Special Fund for Stability Support of the State Administration of Science, Technology and Industry for National Defense-the Open Innovation Project of the Fifth Five Institute of Ordnance(JB11-12);Key Research and Development Program of Anhui Province(202004A05020070);International Science and Technology Cooperation Project of Shanxi Provincial Key R & D Plan(201903D421080)
About author:  WANG Yu, Tel: 15035198712, E-mail: wangyu@nuc.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.421     OR     https://www.cjmr.org/EN/Y2022/V36/I7/536

ElementSiFeCuMgMnZnTiVAl
Content0.250.350.050.030.030.050.030.0599.16
Table 1  Composition of 1060 Aluminum (%, mass fraction)
Monofilament diameter/μmDensity/g·cm-3Tensile strength/GPaElastic modulus/GPaElongation/%
71.794.412351.9
Table 2  Properties of carbon fiber (%, mass fraction)
ElementSiFeCuMnSCNi
Content0.250.290.140.230.010.0699.02
Table 3  Composition of N02201 Nickel (%)
Fig.1  SEM of nickel plated carbon fiber [21] (a) and carbon fiber felt(b)
Sample numberThickness of Al foil/mmNumber of carbon fiber layersHot pressing temperature/℃Hot pressing time/minPressure /MPa
1-10.146157021
1-20.1463010021
1-30.146507028
2-10.2463010021
2-20.2463015021
2-30.2463020021
3-10.336307021
3-20.3363010021
3-30.336507028
Table 4  Preparation process of carbon fiber reinforced aluminum matrix composites
Fig.2  Macro view of carbon fiber/aluminum laminated composites sample (a) 615℃, 70 min, (b) 630℃, 70 min
Fig.3  Microstructure of carbon fiber/aluminum laminated composites sample (a), (b), (c) 0.3mm Al, 3 layers of fiber (d), (e), (f) 0.2 mm Al, 4 layers of fiber (g), (h), (i) 0.1 mm Al, 4 layers of fiber
Fig.4  Microstructure of carbon fiber/aluminum laminated composites sample (a) 0.3 mm Al, 3 layers of fiber, 630℃, 70 min (b), (c) 0.2 mm Al, 4 layers of fiber, 630℃, 150 min, (d) 0.2 mm Al, 4 layers of fiber, 630℃, 200 min
Fig.5  EDS spectrum of carbon fiber/aluminum laminated composites sample
Fig.6  EDS spectrum of carbon fiber/aluminum laminated composites sample
Atomic numberQuality/%Normalized mass/%Atom/%
Al1360.9260.9277.23
Ni2839.0839.0822.77
100100100
Table 5  EDS measurement composition data sheet
Atomic numberQuality/%Normalized mass/%Atom/%
Al13707083.67
Ni2821.5621.5610.25
Fe268.468.466.08
100100100
Table 6  EDS measurement composition data sheet
Fig.7  XRD pattern of carbon fiber/aluminum laminated composites sample
Fig.8  Density statistics of sintered samples
Fig.9  Statistical diagram of three-point bending results of sintered samples
Fig.10  Three point bending diagram of samples with diff-erent fiber volume fraction at 630℃, 100 min, 21 MPa (1 group-0.1 mm Al, 4-layer fibers, 2 group-0.4 mm Al, 4-layer fibers, 3 group-0.3 mm Al, 3-layer fibers)
Fig.11  Fracture morphology of carbon fiber/aluminum clad material sample (a), (b) 0.2 mm Al, 4-layer fibers (c), (d) 0.1 mm Al, 4-layer fibers
1 Vogelesang L, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1
doi: 10.1016/S0924-0136(00)00411-8
2 Sinmazçelik T, Avcu E, Bora M O, et al. A review: fibre metal laminates, background, bonding types and applied test methods [J]. Materials & Design, 2011, 32(7): 3671
doi: 10.1016/j.matdes.2011.03.011
3 Moriniere F D, AlderliestenR C, Sadighi M, et al. An intergrated study on the low-velocity impact response of the GLARE fiber-metal laminate [J]. Composite Structures, 2013, 100(6): 89
doi: 10.1016/j.compstruct.2012.12.016
4 Kaboglu C, Mohagheghian I, Zhou J, et al. High-velocity impact deformation and perforation of fibre metal laminates [J]. Journal of Materials Science, 2018, 53(6): 4209
doi: 10.1007/s10853-017-1871-2
5 Cortes P, Cantell W J. The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber-metal laminates [J]. Journal of Reinforced Plastics & Composites, 2004, 23(15): 1615
6 Yu G C, Wu L J, Ma L, et al. Low velocity impact of carbon fiber aluminium laminates [J]. Composite Structures, 2015, 119: 757
doi: 10.1016/j.compstruct.2014.09.054
7 Dhaliwal G S, Newaz G M. Compression after impact characteristics of carbon fiber reinforced aluminum laminates [J]. Composite Structures, 2017, 160: 1212
doi: 10.1016/j.compstruct.2016.11.015
8 Xue J, Wang W X, Zhang J Z, et al. Progressive failure analysis of the fiber metal laminates based on chopped carbon fiber strands [J]. Journal of Reinforced Plastics & Composites, 2015, 34: 364
9 Lin Y, Huang Y X, Huang T, et al. Open-hole tensile behavior and failure prediction of carbon fibre reinforced aluminium laminates [J]. Polymer Composites, 2018, 39(11): 4123
doi: 10.1002/pc.24477
10 Jiang H Y, Ren Y R, Xiang J W. A numerical study on the energy-absorption of fibre metal laminate conical frusta under quasi-static compression loading [J]. Thin-Walled Structures, 2018, 124: 278
doi: 10.1016/j.tws.2017.12.020
11 Banat D, Mania R J. Progressive failure analysis of thin-walled fibre metal laminate columns subjected to axial compression [J]. Thin-Walled Structures, 2018, 122: 52
doi: 10.1016/j.tws.2017.09.034
12 Bieniaś J, Jakubczak P, Surowska B, et al. Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminum hybrid laminates [J]. Archives of Civil and Mechanical Engineering, 2015, 15(4): 925
doi: 10.1016/j.acme.2014.09.007
13 Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials [J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1123
doi: 10.1016/1359-835X(96)00074-7
14 Li H G, Xu Y W, Hua H G, et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences [J]. Composite Structures, 2018, 187: 354
doi: 10.1016/j.compstruct.2017.12.068
15 Sadighi M, Dariushi S. Effect of fiber orientation and stacking sequence on bending properties of fiber/metal laminates [C]// Asme International Mechanical Engineering Congress & Exposition. 2008
16 Liu C, Du D D, Li H G, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point bending load [J]. Composites Part B Engineering, 2016, 97: 361
doi: 10.1016/j.compositesb.2016.05.003
17 Ostapiuk M, Surowska B, Bienias J, et al. Structure characteristics in glass/aluminium hybrid laminates after bending strength test [J]. Polskie Towarzystwo Materiaów Kompozytowych, 2013, 3: 237
18 Dhaliwal G S, Newaz G M. Experimental and numerical investigation of flexural behaviour of carbon fiber reinforced aluminium laminates [J]. Journal of Reinforced Plastics & Composites, 2016: 32
19 Nurhaniza M, Ariffin M K A M, Mustapha F, et al. Flexural analysis of aluminium/carbon-epoxy fiber metal laminates [J]. Australian Journal of Basic and Applied Sciences, 2015, 9(19): 35
20 Osapiuk M, Bienias J, Surowska B. Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers [J]. Science & Engineering of Composite Materials, 2018, 25(6): 1095
21 Zhang J J. Fabrication of woven carbon fibers reinforced Al-matrix composites and analysis of the corresponding infiltration mechanism [D]. Dalian University of Technology, 2018
张峻嘉. 碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究 [D]. 大连理工大学, 2018
22 Tavoosi M. Fabrication and thermal characterization of amorphous and nanocrystalline Al9FeNi/Al3Ti compound [J]. Materials Chemistry & Physics, 2017, 186(15): 14
23 Lin C, Kao P. Fatigue delamination growth in carbon fibre-reinforced aluminium laminates [J]. Composites Part A Applied Science & Manufacturing, 1996, 27(1): 9
24 Lin C, Kao P. Delamination growth and its effect on crack propagation in carbon fiber reinforced aluminum laminates under fatigue loading [J]. Acta Materialia, 1996, 44(3): 1181
doi: 10.1016/1359-6454(95)00182-4
25 Lin C, Kao P. Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates [J]. Materials Science & Engineering A, 1995, 190(1-2): 65
26 Pippel E, et al. Interlayer structure of carbon fibre reinforced aluminium wires [J]. Journal of Materials Science, 2000, 35(9): 2279
doi: 10.1023/A:1004787112162
27 Yang J, Pickard S M, Cady C, et al. The stress/strain behavior of aluminum matrix composites with discontinuous reinforcements [J]. Acta Metallurgica Et Materialia, 1991, 39(8): 1863
doi: 10.1016/0956-7151(91)90155-T
28 Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion [J]. Materials Science and Engineering, 1986, 81(1-2): 175
doi: 10.1016/0025-5416(86)90261-2
29 Liu Y, Wang H. Preparation and performance of continuous carbon-fiber reinforced aluminum matrix composites [J]. Foundry Technology, 2018, 39(6): 1202
刘 艺, 王 华. 连续碳纤维增强铝基复合材料的制备与性能研究 [J]. 铸造技术, 2018, 39(6): 1202
30 Wang M, Qu Y D, Li G L, et al. Microstructure and properties of short nickel coated carbon fibers reinforced aluminum matrix composites [J]. Special Casting and Nonferrous Alloy, 2017, 37(10): 1117
王 敏, 曲迎东, 李广龙 等. 镀镍短碳纤维增强铝基复合材料的组织及性能 [J]. 特种铸造及有色合金, 2017, 37(10): 1117
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[8] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[9] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[10] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[11] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[12] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[13] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[14] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
[15] CHEN Bin,PEI Xinpeng,XU Yang,ZHANG Ying. Effect of Reactive Organic Modifiers on Thermal/Mechanical Properties of Epoxy/Clay Nanocomposites[J]. 材料研究学报, 2020, 34(3): 161-168.
No Suggested Reading articles found!