Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 641-650    DOI: 10.11901/1005.3093.2020.562
ARTICLES Current Issue | Archive | Adv Search |
Surface Graft Modification of Domestic PBO Fiber by Atmospheric Air Plasma
CHEN Yizi1, ZHANG Chengshuang1,2, CHEN Ping1()
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Xi'an Aerospace Composites Research Institute, Xi'an 710025, China
Cite this article: 

CHEN Yizi, ZHANG Chengshuang, CHEN Ping. Surface Graft Modification of Domestic PBO Fiber by Atmospheric Air Plasma. Chinese Journal of Materials Research, 2021, 35(9): 641-650.

Download:  HTML  PDF(6592KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyurethane was grafted onto the surface of domestic poly-p-phenylene benzobisoxazole (PBO) fiber by atmospheric air dielectric barrier discharge plasma, and the effect of sizing agent on grafting reaction was invetigated. The results of XPS analysis show that the surface chemical composition of PBO fiber modified by plasma grafting polyurethane changed greatly. Compared with the simple air dielectric barrier discharge plasma treated one, the PBO fiber modified by plasma grafting polyurethane had more carboxyl groups, and of which the increment for the later one was 64%~189% (without sizing agent) and 102~184% (with sizing agent) respectively. Sizing agent cannot affect the grafting reaction, and the oxazole ring of PBO was destroyed by plasma grafting reaction. However, ATR-FTIR characterization of PBO fibers with sizing agent showed that the oxazole ring characteristic peaks did not change before and after grafting, so there was no evidence for the destruction of PBO molecules in the near surface. The damage of oxazole ring was detected on the grafted PBO fiber without sizing agent. Thus the sizing agent can prevent the damage of DBD plasma on the near surface of the fiber.

Key words:  PBO fiber      plasma graft      surface modified      chemical     
Received:  25 December 2020     
ZTFLH:  V258  
Fund: National Natural Science Foundation of China(513030106);Liaoning Revitalization Talents Program(XLYC1802085);Dalian Science and Technology Innovation Fund Project(2019J11CY007);Fundamental Research Funds for the Central Universities(DUT20GF207);Fundamental Research Funds for Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education(KF2004);National Plan for Aerospace Support(617010802)
About author:  CHEN Ping, Tel: 18940937998, E-mail: pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.562     OR     https://www.cjmr.org/EN/Y2021/V35/I9/641

IsocyanatesAlcoholsExtenderReaction Product
HMDIEGPMDAHMDIE-PU
HDIHDIE-PU
IPDIIPDIE-PU
HMDITEGHMDITE-PU
HDIHDITE-PU
IPDIIPDITE-PU
Table 1  Experimental materials and Sample of polyurethane[28]
PBO sampleSoxhlet before treatmentGraftDBD treatmentSoxhlet before characterization
PBOs
PBO
DBDs
DBD
HDIEsHDIE-PU
HDIEHDIE-PU
HDITEsHDITE-PU
HDITEHDITE-PU
HMDIEsHMDIE-PU
HMDIEHMDIE-PU
HMDITEsHMDITE-PU
HMDITEHMDITE-PU
IPDIEsIPDIE-PU
IPDIEIPDIE-PU
IPDITEsIPDITE-PU
IPDITEIPDITE-PU
Table 2  Samples of treated PBO fiber
Fig.1  XPS survey spectra of the PBO fiber surface before and after being grafted
Fig.2  XPS N1s spectra of PBO fiber surface before and after being grafted
Fig.3  XPS O1s spectra of PBOs fiber surface before and after being grafted
SamplesGroup percent/%Group ratio/%Active C/%
C=CC-ON=C-OCOOHC-O/C=CN=C-O/C=CCOOH/C=C
PBOs61.326.112.60.042.520.60.038.7
PBO63.027.39.70.043.215.40.037.0
DBDs52.230.214.03.657.826.86.947.8
DBD53.233.210.63.062.419.95.646.8
HDIEs57.327.78.36.748.314.611.842.7
HDIE55.532.18.83.557.915.96.444.5
HDITEs49.130.210.310.461.421.021.150.9
HDITE60.824.67.76.940.412.711.339.2
HMDIEs53.430.99.95.957.818.511.046.6
HMDIE58.627.67.86.047.013.310.241.4
HMDITEs54.228.58.48.952.615.616.545.8
HMDITE60.525.06.48.041.410.613.239.5
IPDIEs53.132.56.77.861.112.614.646.9
IPDIE51.932.29.56.562.018.212.548.1
IPDITEs50.430.011.18.559.422.116.849.6
IPDITE52.429.210.08.455.719.116.147.6
Table 3  Relative content of carbon groups on the surface of PBOs fiber before and after being grafted
SamplesGroup percent/%Group ratio/%Group percent/%Group ratio/%
=N--NH-=N-/-NH-C=O/H2OC-O(C=O/H2O)/C-O
PBOs84.715.3552.855.045.0122.2
PBO80.519.5413.448.451.648.4
DBDs63.836.2176.046.353.786.2
DBD76.323.7322.841.858.241.8
HDIEs58.042.0137.842.157.972.6
HDIE65.534.5190.238.661.438.6
HDITEs55.444.6124.540.659.468.2
HDITE62.237.8164.844.955.144.9
HMDIEs61.338.7158.339.660.465.6
HMDIE62.737.3168.241.458.641.4
HMDITE66.233.8195.943.856.243.8
HMDITEs55.644.4125.540.859.269.1
IPDIE69.830.2230.841.059.041.0
IPDIEs56.243.8128.237.262.859.3
IPDITE63.936.1176.841.059.041.0
IPDITEs62.337.7165.339.860.266.2
Table 4  Relative content of nitrogen and oxygen groups on the surface of PBO fiber before and after being grafted
Fig.4  ATR-FTIR of PBOs fiber before and after being grafted
Fig.5  ATR-FTIR of PBO fiber (with sizing agent) before and after being grafted
SampleI844/I818d(PBOs)I924/I818d(PBOs)I924/I844d(PBOs)
PBOs96.93-80.05-82.58-
DBDs95.31-1.6279.20-0.8583.100.52
HDIEs94.68-2.2560.48-19.5763.88-18.70
HDITEs94.69-2.2458.12-21.9361.38-21.20
HMDIEs97.830.8966.06-13.9967.52-15.06
HDMITEs94.50-2.4377.12-2.9381.60-0.98
IPDIEs92.82-4.1159.35-20.7063.94-18.65
IPDITEs95.72-1.2278.62-1.4382.14-0.45
Table 5  Strength ratio of PBOs fiber groups before and after being grafted (%)
Fig.6  Plasma grafting of PBOs fiber (without sizing agent)
Fig.7  Mechanism of plasma grafting PBO fiber
SampleI844/I818d(PBO)I924/I818d(PBO)I924/I844d(PBO)
PBO94.17-61.16-64.95-
DBD94.340.1775.4814.3280.0115.06
HDIE95.030.8660.30-0.8763.45-1.50
HDITE94.190.0261.730.5665.540.59
HMDIE96.151.9862.130.9664.61-0.34
HDMITE94.840.6760.06-1.1063.33-1.62
IPDIE94.550.3861.790.6365.350.40
IPDITE95.070.9079.2318.0783.3418.39
Table 6  Strength ratio of PBO fiber (with sizing agent) groups before and after being grafted (%)
Fig.8  Plasma grafting of PBO fiber (with sizing agent)
1 Qian B Z. China realize mass production of PBO fiber [J]. Synth. Fib. China, 2019, 48(4): 55
钱伯章. 我国实现PBO纤维量产 [J]. 合成纤维, 2019, 48(4): 55
2 Zhang C S, Liu N, Bao Y L, et al. The effect of thermo-oxidative aging on mechanical properties of PBO fiber reinforced composites [J]. Synth. Mater. Ag. Appl., 2016, 45(5): 17
张承双, 刘宁, 包艳玲等. 热氧老化对PBO纤维复合材料力学性能的影响 [J]. 合成材料老化与应用, 2016, 45(5): 17
3 Li Y, Wang X F, Wo Z K. The high-perfomance fiber of 21th century-PBO fiber [J]. Synth. Fib. China, 2002, 31(1): 18
李晔, 汪晓峰, 沃志坤. 二十一世纪的超级纤维—PBO纤维 [J]. 合成纤维, 2002, 31(1): 18
4 Zhou Y, Gao H, Zhang M Y, et al. Study on heat resistance and structural evolution of high-performance organic fibers [J]. China Synth. Fib. Ind., 2019, 42(4): 6
周映, 高鸿, 张梦颖等. 高性能有机纤维耐热性能与结构演变研究 [J]. 合成纤维工业, 2019, 42(4): 6
5 Kitagawa T, Murase H, Yabuki K. Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber [J]. J. Polym. Sci., 1998, 36B: 39
6 Luan Y Y, Liu X F, Xie J X. Process and action mechanism of sonochemical surface treatment of PBO fibers [J]. Polym. Mater. Sci. Eng., 2016, 25(9): 86
栾燕燕, 刘雪峰, 谢建新. PBO纤维表面超声化学处理工艺及作用机理 [J]. 高分子材料科学与工程, 2016, 25(9): 86
7 Luo K Q, Jin J H, Yang S L, et al. Improvement of surface wetting properties of poly (p-phenylene benzoxazole) by incorporation of ionic groups [J]. Mater. Sci. Eng., 2006, 132B: 59
8 Zhang T, Hu D Y, Jin J H, et al. Improvement of surface wettability and interfacial adhesion ability of poly (p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2, 5-dihydroxyterephthalic acid (DHTA) [J]. Eur. Polym. J., 2009, 45: 302
9 Luo L B, Hong D, Zhang L J, et al. Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism [J]. Compo. Sci. Technol., 2018, 165: 106
10 Wu G M, Shyng Y T, et al. Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment [J]. Composites, 2004, 35A: 1291
11 Wang J L, Liang G Z, Zhao W, et al. Enzymatic surface modification of PBO fibres [J]. Surf. Coat. Technol., 2007, 201: 4800
12 Zhang C H, Zhang C Y, Zhang Q, et al. Synergy modification of the microstructure and the property of PBO fiber by γ‐ray radiation [J]. Polym. Eng. Sci., 2018, 58: 272
13 Chen L, Du Y Z, Huang Y D, et al. Hierarchical poly (p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer [J]. Composites, 2016, 88A: 123
14 Chen L, Hu Z, Zhao F, et al. Enhanced interfacial properties of PBO fiber via electroless nickel plating [J]. Sur. Coat. Technol., 2013, 235: 669
15 Tang L, Zhang J L, Gu J W. Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites [J]. Chin. J. Aeronaut., 2021, 34: 659
16 Chen P, Yu Q, Xiong X H, et al. Surface modification of high performance fibers and interfacial properties of their reinforced bismaleimide resin matrix composites [J]. Acta Polymer. Sin., 2018, (3): 323
陈平, 于祺, 熊需海等. 高性能纤维表面改性及其双马树脂基复合材料界面 [J]. 高分子学报, 2018, (3): 323
17 Zhang R Y, Pan X L, Jiang M W, et al. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber [J]. Appl. Surf. Sci., 2012, 261: 147
18 Liu D, Chen P, Mu J J, et al. Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment [J]. Appl. Surf. Sci., 2011, 257: 6935
19 Liu Z, Chen P, Zhang X L, et al. Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites [J]. Appl. Surf. Sci., 2013, 283: 38
20 Tamargo-Martínez K, Martínez-Alonso, A, Gracia M, et al. Tailoring of the interfacial properties of polymeric single fibre-reinforced epoxy composites by non-oxidative plasma treatments [J]. Composites, 2013, 50A: 102
21 Wu G M, Chang C H. Modifications of rigid rod poly(1, 4-phenylene-cis-benzobisoxazole) fibers by gas plasma treatments [J]. Vacuum, 2007, 81: 1159
22 Liu D, Chen P, Yu Q, et al. Improved mechanical performance of PBO fiber-reinforced bismaleimide composite using mixed O2/Ar plasma [J]. Appl. Surf. Sci., 2014, 305: 630
23 Liu Z, Chen B H, Chen P. Treatment of oxygen dielectric barrier discharge plasma on PBO fiber surface and influence on its BMI composites [J]. Chin. J. Mater. Res., 2020, 34: 109
刘哲, 陈博涵, 陈平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响 [J]. 材料研究学报, 2020, 34: 109
24 Liu Z, Chen P, Han D B, et al. Atmospheric air plasma treated PBO fibers: wettability, adhesion and aging behaviors [J]. Vacuum, 2013, 92: 13
25 Li W B. Study of surface modification on domestic high-peroformance PBO fiber [D]. Shanghai: East China University of Science and Technology, 2013
李文彬. 国产高性能PBO纤维的表面改性研究 [D]. 上海: 华东理工大学, 2013
26 Liu X D, Qiu Z M, Wang B, et al. The surface analysis and surface treatment of PBO fiber [J]. J. Solid Rocket Technol., 2002, 25(2): 70
刘新东, 丘哲明, 王斌等. PBO纤维表面分析与表面偶联剂处理 [J]. 固体火箭技术, 2002, 25(2): 70
27 Gu J W, Dang J, Geng W C, et al. Surface modification of HMPBO fibers by silane coupling agent of KH-560 treatment assisted by ultrasonic vibration [J]. Fib. Polym., 2012, 13: 979
28 Chen Y Z, Xu D W, Qiu H F, et al. Improvement of the interfacial properties of PBO/Epoxy composites by online continuous plasma grafting with polyurethane [J]. Progr. Organ. Coat., 2020, 143: 105610
29 Chen P, Chen Y Z, Wang J, et al. Method for improving interfacial property of composite material by multi-carboxy polyurethane grafting [P]. Chin Pat, 201810723309.1, 2018
陈平, 陈怿咨, 王静等. 一种多羧基聚氨酯接枝提高复合材料界面性能的方法 [P]. 中国专利, 201810723309.1, 2018
[1] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[3] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[4] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[5] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[6] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[7] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[8] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[9] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[10] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] CAI Yao, WU Hongmei, LIU Wu, LI Duan, FAN Shiyi, WANG Yangyang. Preparation and Properties of Polylactic Acid Chemically Grafted with Epoxidized Soybean Oil[J]. 材料研究学报, 2022, 36(1): 73-80.
[12] WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. 材料研究学报, 2021, 35(8): 561-571.
[13] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[14] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[15] ZHANG Shaohua, LI Yanrui, WEI Yinghui, LIU Baosheng, HOU Lifeng, DU Huayun, LIU Xiaoda. Synergistic Effect of Multi-media on Carbon Steel Corrosion[J]. 材料研究学报, 2021, 35(10): 721-731.
No Suggested Reading articles found!