|
|
Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating |
WANG Gen, LI Xinmei( ), LU Caibin, WANG Songchen, CHAI Cheng |
College of Mechanical Engineering, Xinjiang University, Urumqi 830047, China |
|
Cite this article:
WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating. Chinese Journal of Materials Research, 2021, 35(8): 561-571.
|
Abstract The CoCuFeNiTi high entropy alloy coating was prepared by laser cladding technology on the surface of 40 Cr steel, which then was characterized by means of SEM, XRD and EDS, as well as microhardness tester, wear resistance and corrosion resistance test. The results show that among others the coating prepared by laser beam with power of 700 W and scanning speed of 6 mm/s presents the best in surface quality and metallurgical bonding between the coating and the substrate. The coating is mainly composed of FCC phase, a small amount of Cu4Ti phase and nano precipitates rich in Cu. The microstructure of the coating shows typical dendrite structure, while Cu segregated in between dendrites as micro- and/or nano-particulates rich in Cu. The microhardness of the coating is 438.83HV, which is 1.7 times that of 40 Cr steel. The wear mass loss of the coating is about 1/2 that of 40 Cr steel, indicating the coating has better wear resistance. The wear of the coating is mainly adhesive wear, accompanied by a certain degree of abrasive grain wear. The corrosion resistance of the coating in acidic medium of pH=4 and 3.5%NaCl solution was better than that of 40 Cr steel.
|
Received: 21 December 2020
|
|
Fund: Supported by National Natural Science Foundation of China(51865055);Tianshan Talent Program of Xinjiang Autonomous Region(201720025);Postgraduate Innovation Project of Xinjiang Autonomous Region(XJ2020G051) |
About author: LI Xinmei, Tel:17716909771, E-mail: lxmxj2009@126.com
|
1 |
Liu Q, Wang X Y, Huang Y B, et al. Effect of molybdenum content on microstructure and corrosion resistance of CoCrFeNiMo high entropy [J]. Chinese Journal of Materials Research, 2020, 34(11): 868
|
|
刘谦, 王昕阳, 黄燕滨等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34(11): 868
|
2 |
Park T, Kim J H. Tensile properties and microstructure evolution during two-stage tensile testing of CoCrFeMnNi high-entropy alloy [J]. Journal of Materials Research and Technology, 2020, 9(4): 7551
|
3 |
Yang F, Dong L, Hu X, et al. Microstructural features and tensile behaviors of a novel FeMnCoCr high entropy alloys [J]. Materials Letters, 2020, 275: 128154
|
4 |
Shi P, Yu Y, Xiong N, et al. Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings [J]. Tribology International, 2020, 151: 106470
|
5 |
Wang H, Wang Z H. Microstructure and properties of AlxCoCrFeNi high-entropy alloys prepared by plasma cladding [J]. Materials Reports, 2018, 32(4): 78
|
|
王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究 [J]. 材料导报, 2018, 32(4): 78
|
6 |
Wang Y D, Zhang X R, Cui X F, et al. Effects of laser energy density on microstructure and corrosion resistance of NiCrCoTiV high entropy [J]. Surface Technology, 2019(6): 118
|
|
王一丹, 张学润, 崔秀芳等. 激光能量密度对NiCrCoTiV高熵合金涂层组织结构及耐蚀性能的影响 [J]. 表面技术, 2019(6): 118
|
7 |
Zhang L T, Liu D X, Zhang W Q, et al. Research progress of laser cladding coating on titanium alloy surface [J]. Surface Technology, 2020, 49(8): 97
|
|
张蕾涛, 刘德鑫, 张伟樯等. 钛合金表面激光熔覆涂层的研究进展 [J]. 表面技术, 2020, 49(8): 97
|
8 |
Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on fe-based substrate [J]. Surface Technology, 2020(3): 74
|
|
朱红梅, 胡际鹏, 李柏春等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术, 2020(3): 74
|
9 |
Zhang F Z, Sun W L, Wang K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts [J]. Surface Technology, 2019, 48(1): 168
|
|
张富祯, 孙文磊, 王恪典等. 面向薄壁件的激光熔覆修复工艺参数优化研究 [J]. 表面技术, 2019, 48(1): 168
|
10 |
Wang G, Li X M, Wang S C. Research progress of various kinds of high entropy alloys [J]. Journal of Functional Materials, 2019, 50(12): 12035
|
|
王根, 李新梅, 王松臣. 各类高熵合金的研究进展 [J]. 功能材料, 2019, 50(12): 12035
|
11 |
Liu L, Wang C M, Sun H F, et al. AlFeCrNiTiCux high-entropy alloy coatings fabricated by laser cladding [J]. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(02): 74
|
|
刘亮, 王灿明, 孙宏飞等.激光熔覆AlFeCrNiTiCux系高熵合金涂层 [J]. 山东科技大学学报(自然科学版), 2018, 37(02): 74
|
12 |
Li D L, Zhou F, Yu S H. Microstrucrure and corrosion resistance of FeCrNiMnMoxB0.5 high entropy alloy coating prepared by laser cladding [J]. High Power Laser and Particle Beams, 2016, 28(2): 196
|
|
李栋梁, 周芳, 余师豪.激光熔覆FeCrNiMnMoxB(0.5)高熵合金涂层组织与耐蚀性能 [J]. 强激光与粒子束, 2016, 28(2): 196
|
13 |
Zhang Y, Han T F, Xiao M, et al. Effect of process parameters on the microstructure and properties of laser-clad FeNi-CoCrTi(0.5) high-entropy alloy coating [J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(05): 630
|
14 |
Li Y N, Liang H, Nie Q X, et al. Microstructures and wear resistance of CoCrFeNi2V0.5Tix high-entropy alloy coatings prepared by laser cladding [J]. Crystals, 2020, 10(5): 352
|
15 |
Zhang Y, Han T, Xiao M, et al. Preparation of diamond reinforced NiCoCrTi0.5Nb0.5 high-entropy alloy coating by laser cladding: microstructure and wear behavior [J]. Journal of Thermal Spray Technology, 2020, 29(5): 1827
|
16 |
Wu B Y. Microstructure and mechanical properties of FeNi-CoCu system high entropy alloys and their composites [D]. South China University of Technology, 2017
|
|
吴炳勇. FeNiCoCu系高熵合金及其复合材料的微观组织与力学性能研究 [D]. 华南理工大学, 2017
|
17 |
Liu L, Qi J G, Wang B, et al. Microstructure and Mechanical Properties of CoCrFeNiVx High Entropy Alloys [J]. Special Casting & Nonferrous Alloys, 2015(11): 1130
|
|
刘亮, 齐锦刚, 王冰等. CoCrFeNiVx高熵合金的组织与力学性能 [J]. 特种铸造及有色合金, 2015(11): 1130
|
18 |
Zhang Y, Chen M B, Yang X, et al. Advanced Technology in High-entropy Alloys [M]. Beijing: Chemical Industry Press, 2019
|
|
张勇, 陈明彪, 杨潇等. 先进高熵合金技术 [M]. 北京:化学工业出版社, 2019
|
19 |
Ge Y Q, Wang W X. Microstructure and wear resistance of laser clad Ni60 alloy on AZ31B magnesium alloy in different laser power [J]. China Surface Engineering, 2012, 25(1): 45
|
|
葛亚琼, 王文先. 不同激光功率下镁合金表面激光熔覆Ni60合金涂层的显微组织和磨损性能 [J]. 中国表面工程, 2012, 25(1): 45
|
20 |
Tan J H, Sun R L, Niu W, et al. Effect of laser scanning speed on microstructure and properties of TC4 alloy surface laser cladding composite coating [J]. Materials Reports, 2020, 34(12): 98
|
|
谭金花, 孙荣禄, 牛伟等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响 [J]. 材料导报, 2020, 34(12): 98
|
21 |
Li G, Wen Y, Jiang T L, et al. Effect of Cu and Co element on microstructure and properties of laser sintering of CrFeNiAlSi high entropy alloy [J]. Heat Treatment of Metals, 2019, 44(6): 86
|
|
李刚, 温影, 蒋谭琳等. Cu, Co元素对激光烧结CrFeNiAlSi高熵合金组织与性能的影响 [J]. 金属热处理, 2019, 44 (6): 86
|
22 |
Li W, Liu G Z, Guo J J. Microstructure and electrochemical properties of AlFeCuCoNiCrTix high entropy alloys [J]. Special Casting & Nonferrous Alloys, 2009, 29(10): 941
|
|
李伟, 刘贵仲, 郭景杰. AlFeCuCoNiCrTix高熵合金的组织结构及电化学性能 [J]. 特种铸造及有色合金, 2009, 29(10): 941
|
23 |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817
|
24 |
Jiang S Y, Lin Z F, Sun Y X. Corrosion resistance of as-cast and annealed AlCoCrFeNi high-entropy alloys [J]. Rare Metal Materials and Engineering, 2018, 47(10): 277
|
|
蒋淑英, 林志峰, 孙永兴. AlCoCrFeNi高熵合金铸态与退火态的耐蚀性 [J]. 稀有金属材料与工程, 2018, 47(10): 277
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|