Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 561-571    DOI: 10.11901/1005.3093.2020.541
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating
WANG Gen, LI Xinmei(), LU Caibin, WANG Songchen, CHAI Cheng
College of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
Cite this article: 

WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating. Chinese Journal of Materials Research, 2021, 35(8): 561-571.

Download:  HTML  PDF(9378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The CoCuFeNiTi high entropy alloy coating was prepared by laser cladding technology on the surface of 40 Cr steel, which then was characterized by means of SEM, XRD and EDS, as well as microhardness tester, wear resistance and corrosion resistance test. The results show that among others the coating prepared by laser beam with power of 700 W and scanning speed of 6 mm/s presents the best in surface quality and metallurgical bonding between the coating and the substrate. The coating is mainly composed of FCC phase, a small amount of Cu4Ti phase and nano precipitates rich in Cu. The microstructure of the coating shows typical dendrite structure, while Cu segregated in between dendrites as micro- and/or nano-particulates rich in Cu. The microhardness of the coating is 438.83HV, which is 1.7 times that of 40 Cr steel. The wear mass loss of the coating is about 1/2 that of 40 Cr steel, indicating the coating has better wear resistance. The wear of the coating is mainly adhesive wear, accompanied by a certain degree of abrasive grain wear. The corrosion resistance of the coating in acidic medium of pH=4 and 3.5%NaCl solution was better than that of 40 Cr steel.

Key words:  metallic materials      high entropy alloy      electrochemical corrosion      wear     
Received:  21 December 2020     
ZTFLH:  TL214+.6  
Fund: Supported by National Natural Science Foundation of China(51865055);Tianshan Talent Program of Xinjiang Autonomous Region(201720025);Postgraduate Innovation Project of Xinjiang Autonomous Region(XJ2020G051)
About author:  LI Xinmei, Tel:17716909771, E-mail: lxmxj2009@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.541     OR     https://www.cjmr.org/EN/Y2021/V35/I8/561

Scanning speed/mm·s-16
Laser power/W5006007008009001000
Table 1  Single factor test table of laser power
Laser power/W700
Scanning speed/mm·s-14567
Table 2  Single factor test table of scanning speed
Fig.1  Single channel coating with different laser power (a) 500 W; (b) 600 W; (c) 700 W; (d) 800 W; (e) 900 W; (f) 1000 W
Fig.2  Cross section morphology of coating prepared by different laser power (a) 500 W; (b) 600 W; (c) 700 W; (d) 800 W; (e) 900 W; (f) 1000 W
Fig.3  Single channel coating with different scanning speeds (a) 4 mm/s; (b) 5 mm/s; (c) 6 mm/s; (d) 7 mm/s
Fig.4  Prepared at different laser scanning speeds (a) 4 mm/s; (b) 5 mm/s; (c) 6 mm/s; (d) 7 mm/s
Fig.5  XRD pattern of the powder and CoCuFeNiTi high entropy alloy coating
Fig.6  Microstructure of CoCuFeNiTi high entropy alloy coating
Fig.7  Distribution of each element in the CoCuFeNiTi high entropy alloy coating
CoCuFeNiTi
Co6-10-28
Cu134-9
Fe-2-17
Ni-36
Ti
Table 3  Mixing enthalpy of among elements (kJ·mol-1)
Fig.8  Hardness distribution curve of CoCuFeNiTi high entropy alloy coating
Fig.9  Microstructure of heat-affected zone
Fig.10  Wear loss mass of CoCuFeNiTi high entropy alloy coating and matrix
Fig.11  Wear morphology of CoCuFeNiTi high entropy alloy coating
Fig.12  Polarization curves of CoCuFeNiTi high entropy alloy coating and matrix in different corrosive solution (a) polarization curves of acidity with pH=4; (b) polarization curve in 3.5%NaCl solution; (c) polarization curve of CoCuFeNiTi high entropy alloy coating in different corrosive solution
pH=4 acidic solution3.5%NaCl solution
Ecorr/VI/mA·mm-2Ecorr/VIcorr/mA·mm-2Ep/VIpass/mA·mm-2
Matrix-0.5677.304×10-3-0.4652.890×10-40.1421.467×10-3
Coating-0.3715.556×10-3-0.3951.600×10-40.2254.307×10-4
Table 4  Ecorr, Icorr, Ep and Ipass of matrix and CoCuFeNiTi high entropy alloy coating in different corrosive solution
Fig.13  Corrosion morphology of CoCuFeNiTi high entropy alloy coating and matrix in pH=4 acidic solution (a, b) corrosion morphology of CoCuFeNiTi high entropy alloy coating; (c, d) corrosion morphology of matrix)
Fig.14  Corrosion morphology of CoCuFeNiTi high entropy alloy coating and substrate in 3.5%NaCl solution (a, b) corrosion morphology of CoCuFeNiTi high entropy alloy coating; (c, d) corrosion morphology of matrix
1 Liu Q, Wang X Y, Huang Y B, et al. Effect of molybdenum content on microstructure and corrosion resistance of CoCrFeNiMo high entropy [J]. Chinese Journal of Materials Research, 2020, 34(11): 868
刘谦, 王昕阳, 黄燕滨等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34(11): 868
2 Park T, Kim J H. Tensile properties and microstructure evolution during two-stage tensile testing of CoCrFeMnNi high-entropy alloy [J]. Journal of Materials Research and Technology, 2020, 9(4): 7551
3 Yang F, Dong L, Hu X, et al. Microstructural features and tensile behaviors of a novel FeMnCoCr high entropy alloys [J]. Materials Letters, 2020, 275: 128154
4 Shi P, Yu Y, Xiong N, et al. Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings [J]. Tribology International, 2020, 151: 106470
5 Wang H, Wang Z H. Microstructure and properties of AlxCoCrFeNi high-entropy alloys prepared by plasma cladding [J]. Materials Reports, 2018, 32(4): 78
王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究 [J]. 材料导报, 2018, 32(4): 78
6 Wang Y D, Zhang X R, Cui X F, et al. Effects of laser energy density on microstructure and corrosion resistance of NiCrCoTiV high entropy [J]. Surface Technology, 2019(6): 118
王一丹, 张学润, 崔秀芳等. 激光能量密度对NiCrCoTiV高熵合金涂层组织结构及耐蚀性能的影响 [J]. 表面技术, 2019(6): 118
7 Zhang L T, Liu D X, Zhang W Q, et al. Research progress of laser cladding coating on titanium alloy surface [J]. Surface Technology, 2020, 49(8): 97
张蕾涛, 刘德鑫, 张伟樯等. 钛合金表面激光熔覆涂层的研究进展 [J]. 表面技术, 2020, 49(8): 97
8 Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on fe-based substrate [J]. Surface Technology, 2020(3): 74
朱红梅, 胡际鹏, 李柏春等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术, 2020(3): 74
9 Zhang F Z, Sun W L, Wang K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts [J]. Surface Technology, 2019, 48(1): 168
张富祯, 孙文磊, 王恪典等. 面向薄壁件的激光熔覆修复工艺参数优化研究 [J]. 表面技术, 2019, 48(1): 168
10 Wang G, Li X M, Wang S C. Research progress of various kinds of high entropy alloys [J]. Journal of Functional Materials, 2019, 50(12): 12035
王根, 李新梅, 王松臣. 各类高熵合金的研究进展 [J]. 功能材料, 2019, 50(12): 12035
11 Liu L, Wang C M, Sun H F, et al. AlFeCrNiTiCux high-entropy alloy coatings fabricated by laser cladding [J]. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(02): 74
刘亮, 王灿明, 孙宏飞等.激光熔覆AlFeCrNiTiCux系高熵合金涂层 [J]. 山东科技大学学报(自然科学版), 2018, 37(02): 74
12 Li D L, Zhou F, Yu S H. Microstrucrure and corrosion resistance of FeCrNiMnMoxB0.5 high entropy alloy coating prepared by laser cladding [J]. High Power Laser and Particle Beams, 2016, 28(2): 196
李栋梁, 周芳, 余师豪.激光熔覆FeCrNiMnMoxB(0.5)高熵合金涂层组织与耐蚀性能 [J]. 强激光与粒子束, 2016, 28(2): 196
13 Zhang Y, Han T F, Xiao M, et al. Effect of process parameters on the microstructure and properties of laser-clad FeNi-CoCrTi(0.5) high-entropy alloy coating [J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(05): 630
14 Li Y N, Liang H, Nie Q X, et al. Microstructures and wear resistance of CoCrFeNi2V0.5Tix high-entropy alloy coatings prepared by laser cladding [J]. Crystals, 2020, 10(5): 352
15 Zhang Y, Han T, Xiao M, et al. Preparation of diamond reinforced NiCoCrTi0.5Nb0.5 high-entropy alloy coating by laser cladding: microstructure and wear behavior [J]. Journal of Thermal Spray Technology, 2020, 29(5): 1827
16 Wu B Y. Microstructure and mechanical properties of FeNi-CoCu system high entropy alloys and their composites [D]. South China University of Technology, 2017
吴炳勇. FeNiCoCu系高熵合金及其复合材料的微观组织与力学性能研究 [D]. 华南理工大学, 2017
17 Liu L, Qi J G, Wang B, et al. Microstructure and Mechanical Properties of CoCrFeNiVx High Entropy Alloys [J]. Special Casting & Nonferrous Alloys, 2015(11): 1130
刘亮, 齐锦刚, 王冰等. CoCrFeNiVx高熵合金的组织与力学性能 [J]. 特种铸造及有色合金, 2015(11): 1130
18 Zhang Y, Chen M B, Yang X, et al. Advanced Technology in High-entropy Alloys [M]. Beijing: Chemical Industry Press, 2019
张勇, 陈明彪, 杨潇等. 先进高熵合金技术 [M]. 北京:化学工业出版社, 2019
19 Ge Y Q, Wang W X. Microstructure and wear resistance of laser clad Ni60 alloy on AZ31B magnesium alloy in different laser power [J]. China Surface Engineering, 2012, 25(1): 45
葛亚琼, 王文先. 不同激光功率下镁合金表面激光熔覆Ni60合金涂层的显微组织和磨损性能 [J]. 中国表面工程, 2012, 25(1): 45
20 Tan J H, Sun R L, Niu W, et al. Effect of laser scanning speed on microstructure and properties of TC4 alloy surface laser cladding composite coating [J]. Materials Reports, 2020, 34(12): 98
谭金花, 孙荣禄, 牛伟等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响 [J]. 材料导报, 2020, 34(12): 98
21 Li G, Wen Y, Jiang T L, et al. Effect of Cu and Co element on microstructure and properties of laser sintering of CrFeNiAlSi high entropy alloy [J]. Heat Treatment of Metals, 2019, 44(6): 86
李刚, 温影, 蒋谭琳等. Cu, Co元素对激光烧结CrFeNiAlSi高熵合金组织与性能的影响 [J]. 金属热处理, 2019, 44 (6): 86
22 Li W, Liu G Z, Guo J J. Microstructure and electrochemical properties of AlFeCuCoNiCrTix high entropy alloys [J]. Special Casting & Nonferrous Alloys, 2009, 29(10): 941
李伟, 刘贵仲, 郭景杰. AlFeCuCoNiCrTix高熵合金的组织结构及电化学性能 [J]. 特种铸造及有色合金, 2009, 29(10): 941
23 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817
24 Jiang S Y, Lin Z F, Sun Y X. Corrosion resistance of as-cast and annealed AlCoCrFeNi high-entropy alloys [J]. Rare Metal Materials and Engineering, 2018, 47(10): 277
蒋淑英, 林志峰, 孙永兴. AlCoCrFeNi高熵合金铸态与退火态的耐蚀性 [J]. 稀有金属材料与工程, 2018, 47(10): 277
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!