Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 667-674    DOI: 10.11901/1005.3093.2020.427
ARTICLES Current Issue | Archive | Adv Search |
Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74
YU Moxin1,2(), KUAI Le1, WANG Liang1, ZHANG Chen1, WANG Xiaoting1,3, CHEN Qihou1
1.School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 234000, China
2.Sinosteel New Materials Co. Ltd. , Ma'anshan 234000, China
3.Magang (Group) Holding Co. Ltd. , Ma'anshan 234000, China
Cite this article: 

YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74. Chinese Journal of Materials Research, 2021, 35(9): 667-674.

Download:  HTML  PDF(2868KB)  Mobile PDF(7518KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

N-doped hierarchical porous carbon (HPCT) was synthesized by adjusting the final activation temperature, with indole as carbon and nitrogen source, CaO as template coupled with KOH activation, and then the adsorption performance of acid orange 74 on HPCT was investigated. BET results show that the surface area of HPCT increases with the increase of activation temperature. The specific surface area of the as-made HPC900 is up to 1629 m2/g when the final activation temperature was 900℃. The FESEM and TEM results demonstrate that the HPCT has the interconnected layer structure. With the rising activation temperature the wall width of HPCT becomes thinner. XPS results show that nitrogen functional groups existed on the HPCT surface, the content of C-NH2 increases gradually as temperature rose. The above functional group is conducive to the π-π stacking effect and electrostatic interaction with absorbate acid orange 74, which is beneficial to the adsorption process. The adsorption isotherm results indicate that the adsorption process could be described by Freundlich model, the equilibrium adsorption capacity of which was more than 270 mg/g by the equilibrium concentration of 50 mg/L. The kinetic results show that the pseudo first-order kinetic equation can better describe the adsorption process, while the physical adsorption is the rate-control step.

Key words:  inorganic non-metallic materials      indole      N-doped porous carbon      acid orange 74      adsorption     
Received:  15 October 2020     
ZTFLH:  O647.3  
Fund: National Natural Science Foundation of China(51602004);China Postdoctoral Science Foundation(2019M652173)
About author:  YU Moxin, Tel: 13865557930, E-mail: yumoxin2005@aliyun.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.427     OR     https://www.cjmr.org/EN/Y2021/V35/I9/667

Fig.1  Chemical structures of adsorbates: acid orange 74
Fig.2  FESEM images of HPC900 (a) and TEM images of HPC800 (b), HPC850 (c) and HPC900 (d)
Fig.3  Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of HPC T
SampleDap/nmSBET/m2·g-1Smic/m2·g-1Vt/cm3·g-1Vmic/cm3·g-1Non-Vmic/Vt
HPC8002.6014589140.950.470.51
HPC8502.7015207731.020.400.61
HPC9003.1216294951.270.260.79
Table 1  Specific surface area and pore structure parameters of HPCT
Fig.4  XPS spectra of HPCT (a), O 1s spectra of HPC900 (b) and N 1s spectra of HPC900 (c)
SamplesC 1sN1sC-N=CN-(C)3C-NH2O 1sC=OC-OH
HPC80082.595.892.392.820.6811.522.392.82
HPC85085.435.062.272.050.749.512.272.05
HPC90087.094.661.671.711.288.251.671.71
Table 2  Nitrogen functional groups in graded porous carbon (atomic fraction, %)
Fig.5  Adsorption isotherms of acid orange 74 onto HPCT (a), Langmuir model fitting (b) and Freundich model fitting (c)
SamplesLangmuirFreundich
qmax/mg·g-1KLR2nKFR2
HPC80011360.0070.991.8535.490.99
HPC85014850.0050.991.5121.190.99
HPC90019660.0030.981.3615.840.99
Table 3  Parameters of adsorption isotherm model fitting for acid orange 74 onto HPCT
Fig.6  Adsorption capacity of acid orange 74 versus time relationship (a), the fitting curves of pseudo-first-order (b) and pseudo-second-order (c)
SamplesPseudo-first orderPseudo-second order
qe/mg·g-1K1R2qeK2R2
HPC8002310.110.992933.63×10-40.95
HPC8502630.070.993082.62×10-40.92
HPC9003870.130.996998.29×10-50.99
Table 4  Parameters of kinetic adsorption
Adsorbentqe/mg·g-1Ref.Adsorbentqe/mg·g-1Ref.
Carbon nanotubes43.21[29]Canola stalks25.06[32]
TiO2 nanoparticles37.03[30]PR leaves7.52[33]
Clinoptilolite44.05[31]HPC900387.53This study
Table 5  Adsorption capacity of different adsorbent for acid orange 74
Fig.7  Mechanism of the adsorption process of HPCT (a), specific adsorption mode (b)
1 Allman A, Daoutidis D, Arnold W A, et al. Efficient water pollution abatement [J]. Ind. Eng. Chem. Res., 2019, 58: 22483
2 Samanta P, Desai A V, Let S, et al. Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation [J]. ACS Sustainable Chem. Eng., 2019, 7: 7456
3 Routoula E, Patwardhan S V. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential [J]. Environ. Sci. Technol., 2020, 54: 647
4 Jin L N, Zhao X S, Qian X Y, et al. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes [J]. J. Colloid Interf. Sci., 2018, 509: 2453
5 Santoso E, Ediati R, Kusumawati Y, et al. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water [J]. Mater. Today Chem., 2020, 16: 100233
6 Youcef L D, Belaroui L L, López-Galindo A. Adsorption of a cationic methylene blue dye on an Algerian palygorskite [J]. Appl. Clay Sci., 2019, 179: 105145
7 Yang S X, Wang L Y, Zhang X D, et al. Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor [J]. Chem. Eng. J., 2015, 275: 315
8 Savarese M, De Marco E, Falco S, et al. Biophenol extracts from olive oil mill wastewaters by membrane separation and adsorption resin [J]. Int. J. Food. Sci. Technol., 2016, 51: 2386
9 Do Carmo J, Justino N M, Se Matias M, et al. Membrane adsorption with polyacrylonitrile prepared with superfine powder-activated carbon, case study: separation process applied in water treatment containing diclofenac [J]. Environ. Technol., 2020, doi: 10.1080/09593330.2020.1793006
10 Lei W J, Ma Y X, La P Q, et al. Preparation and property of Fe3O4/P(St-co-MMA) micro-nano composites [J]. Chin. Mater. Res., 2016, 30: 711
雷文娟, 马应霞, 喇培清等. 磁性Fe3O4/P(St-co-MMA)微纳米复合物的制备和性能 [J]. 材料研究学报, 2016, 30: 711
11 Zang G, Li J J, Ji X S, et al. Study on oil separation from oil/water emulsion via coagulation and ultrafiltration [J]. J. Chem. Eng. Chin. Univ., 2017, 31: 449
张谨, 李俊俊, 纪晓声等. 利用混凝-超滤膜法研究乳化油水的分离过程 [J]. 高校化学工程学报, 2017, 31: 449
12 Liu Z, Demeestere K, Van Hulle S. Enhanced Ozonation of trace organic contaminants in municipal wastewater plant effluent by adding a preceding filtration step: comparison and prediction of removal efficiency [J]. ACS Sustainable Chem. Eng., 2019, 7: 14661
13 Han Z W, Kong S L, Cheng J, et al. Preparation of efficient carbon-based adsorption material using asphaltenes from asphalt rocks [J]. Ind. Eng. Chem. Res., 2019, 58: 14785
14 Gupta K, Divya G, Khatri O P. Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes [J]. Appl. Surf. Sci., 2019, 476: 647
15 Mashkoor F, Nasar A, Inamuddin J. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review [J]. Environ. Chem. Lett., 2020, 18: 605
16 Chen W, Nie Y Y, Sun X G, et al. Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode [J]. Chin. J. Mater. Res., 2019, 33: 371
陈玮, 聂艳艳, 孙晓刚等. 预嵌锂多壁碳纳米管的性能 [J]. 材料研究学报, 2019, 33: 371
17 Sun Y, Li D W, Wei Q F. Adsorption properties of metal-organic framework material MIL-53(Al)-F127 for Bisphenol A. Chin. J. Mater. Res., 2020, 34: 353
孙玥, 李大伟, 魏取福. 金属有机框架材料MIL-53(Al)-F127对双酚A的吸附性能 [J]. 材料研究学报, 2020, 34: 353
18 Oukil S, Bali F, Halliche D. Adsorption and kinetic studies of methylene blue on modified HUSY zeolite and an amorphous mixture of γ-alumina and silica [J]. Sep. Sci. Technol,. 2020, 55: 2642
19 Duc P T, Kobayashi M, Adachi Y, et al. Adsorption characteristics of anionic azo dye onto large α-alumina beads [J]. Colloid Polym. Sci., 2015, 293: 1877
20 Herrera-González A M Caldera-Villalobos M, Peláez-Cid A A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite [J]. J. Environ. Manag., 2019, 234: 237
21 Hou S L, Lu H G, Gu Y F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31: 495
侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(AL)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31: 495
22 Cai Z H, Deng X C, Wang Q, et al. Core-shell granular activated carbon and its adsorption of trypan blue [J]. J. Clean. Prod., 2020, 242: 118
23 Kong Q M, Wang X J, Lou T. Preparation of millimeter-sized chitosan/carboxymethyl cellulose hollow capsule and its dye adsorption properties [J]. Carbohydr. Polym., 2020, 244: 116481
24 She X J, Wu J J, Zhong J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency [J]. Nano Energy, 2016, 27: 138
25 Zhou N, Qiu P X, Chen H, et al. KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects [J]. J. Taiwan Inst. Chem. Eng., 2018, 83: 99
26 Wang H, Liang S, Lv Q Y, et al. Production of hierarchically porous carbon from natural biomass waste for efficient organic contaminants adsorption [J]. J. Clean. Prod., 2020, 26: 121352
27 Benkhaya S, M'rabet S, Hsissou R, et al. Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal [J]. J. Mater. Res. Technol., 2020, 9: 4763
28 Yu J H, Joo S Y, Sim T Y, et al. Post-KOH activation of nitrogen-containing porous carbon with ordering mesostructure synthesized through a self-assembly [J]. Chem. Phys. Lett., 2020, 739: 137028
29 Lan R J, Su W B, Zhang J X. Decolourization of acid orange 74 aqueous solutions in presence of multi-walled carbon nanotubes under ultrasound irradiation [J]. J. Water. Chem. Technol., 2020, 42: 235
30 Topal G, Cakmak N K, Eroğlu A, et al. Removal of acid orange 74 from wastewater with TiO2 nanoparticle [J]. Int. J. Res. Ent. J., 2019, 3: 75
31 Karadag D. Modeling the mechanism, equilibrium and kinetics for the adsorption of acid orange 8 onto surfactant-modified clinoptilolite: the application of nonlinear regression analysis [J]. Dyes Pigm., 2007, 74: 659
32 Hamzeh Y, Ashori A, Azadeh E, et al. Removal of acid orange 7 and remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent [J]. Mater. Sci. Eng., 2012, 32C: 1394
33 Rehman R, Jan Muhammad S, Arshad M. Brilliant green and acid orange 74 dyes removal from water by Pinus roxburghii leaves in naturally benign way: an application of green chemistry [J]. J. Chem., 2019, 2019: 3573704
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!