|
|
Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization |
YANG Jingcheng1, WANG Lizhong1,2( ), ZHONG Zhiping3, ZHENG Yingjun3 |
1.School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China 2.State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China 3.TaiCang Jiuxin Precision Toolings Co. , LTD, Suzhou 215400, China |
|
Cite this article:
YANG Jingcheng, WANG Lizhong, ZHONG Zhiping, ZHENG Yingjun. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization. Chinese Journal of Materials Research, 2021, 35(4): 284-292.
|
Abstract The flow stress behavior during hot compression of 37CrS4 at 950~1100℃, by strain rate in the range of 0.01 s-1~10 s-1 was investigated by means of single pass hot compression test with Gleeble-1500D thermal simulation machine. The results show that the true stress-strain curve of 37CrS4 special steel presents the occurrence of obvious dynamic recrystallization during high-temperature plastic deformation. The microstructure after hot deformation is typical lath martensite. The ratio of critical strain to peak strain of dynamic recrystallization behavior is 0.77162, and the fitting correlation is 0.9576. The softening mechanism of the material is the synergistic effect of dynamic recovery and dynamic recrystallization. The zener-Hollomon parameter (Z parameter) was introduced to establish the recrystallization kinetic model, and then the segmented flow stress constitutive model of 37CrS4 special steel based on dynamic recovery and dynamic recrystallization was obtained. The average correlation of the constitutive model is 0.9756. The predicted stress of the segmented constitutive model was consistent with the experimental stress, in fact, which could accurately predict the high temperature plasticity of 37CrS4 and the variation of flow stress during deformation.
|
Received: 18 August 2020
|
|
Fund: National Natural Science Foundation of China(51865057) |
About author: WANG Lizhong, Tel: 13772034988, E-mail: wanglz@mail.xjtu.edu.cn
|
1 |
Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization of metallic materials [J]. Rare Metal Mat. Eng., 2019, 48(11): 3764
|
|
田宇兴, 刘成, 曹海龙等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
|
2 |
Sun Y, Zhou C, Wan Z P, et al. Research status of dynamic recrystallization model of metallic materials [J]. Mater Rev, 2017, 31 (13): 12
|
|
孙宇, 周琛, 万志鹏等. 金属材料动态再结晶模型研究现状 [J]. 材料导报, 2017, 31(13): 12
|
3 |
Ma W J, Yang X R, Luo L, et al. Dynamic recrystallization model of ultrafine grained pure titanium with composite deformation [J]. Chin. J. Mater. Res., 2020, 34(03): 217
|
|
马炜杰, 杨西荣, 罗雷等. 复合形变超细晶纯钛的动态再结晶模型 [J]. 材料研究学报, 2020, 34(03): 217
|
4 |
Cao Y, Di H S, Zhang J C, et al. Dynamic recrystallization behavior of 800H alloy [J]. Acta Metall. Sin., 2012, 48(10): 1175
|
|
曹宇, 邸洪双, 张洁岑等. 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48(10): 1175
|
5 |
Bai Y B. Study on the forming and microstructure change of 30CrMoA thin-walled cylindrical parts [D]. Qinghuangdao: Yanshan University, 2018.
|
|
白英博. 30CrMoA薄壁筒形件成形及微观组织变化研究 [D]. 秦皇岛: 燕山大学, 2018
|
6 |
Eli S P, Jean G, Mirentxu D, et al. Constitutive description for the design of hot-working operations of a 20MnCr5 steel grade [J]. Mater. Des., 2014, 62: 255
|
7 |
Illarionov A G, Trubochkin A V, Shalaev A M, et al. Isothermal de-composition of β-Solid solution in titanium Alloy Ti-10V-2Fe3Al [J]. Met. Sci. Heat Treat., 2017, 58: 674
|
8 |
Mejía I, Reyes Calderón F, Cabrera J M. Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP steel micro alloyed with Ti, V and Nb [J]. Mater. Sci. Eng. A, 2015, (644): 374
|
9 |
Liu S P, Li D F, Guo S L. Critical conditions of dynamic recrystallization for B4Cp/6061Al composite [J]. Rare Metal Mat. Eng.,2017, 46(07): 1815
|
10 |
Ouyang D L, Cui X, Lu S Q, et al. Compression deformation behavior and dynamic recrystallization in β phase region of forged TB6 titanium alloy [J]. Chin. J. Mater. Res., 2019, 33(03): 218
|
|
欧阳德来, 崔霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33(03): 218
|
11 |
Ouyang D L, Lu S Q, Cui X, et al. Dynamic recrystallization kinetics of β-zone deformation of TB6 titanium alloy [J]. A Chin. J. Mater. Res., 2019, 33(12): 918
|
|
欧阳德来, 鲁世强, 崔霞等. TB6钛合金β区变形的动态再结晶动力学 [J]. 材料研究学报, 2019, 33(12): 918
|
12 |
Zhao J, Zhong J, Yan F, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti10V-2Fe-3Al [J]. J. Alloy. Compd., 2017(02), 710
|
13 |
Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior and constitutive model of 20MnNiMo steel [J]. J SHANGHAIJIAOTONG U, 2016, 50(07): 1041
|
|
王梦寒, 王根田, 岳宗敏等. 20MnNiMo钢热变形行为及基于物象的本构模型 [J]. 上海交通大学学报, 2016, 50(07): 1041
|
14 |
Hu C. Study on thermoplastic deformation behavior of GH4698 nickel base superalloy [D]. Harbin: Harbin Institute of technology, 2015.
|
|
胡超. GH4698镍基高温合金热塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
15 |
Chen X W, Wang J Y, Yang X Q, et al. Hot deformation behavior and dislocation density evolution of Cr8 alloy steel [J]. J.JILIN. U.: TECHNO. ED., 2020, 50(01): 91
|
|
陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报(工学版), 2020, 50(01): 91
|
16 |
Puchi-Cabrera E S, Guérin J D, La J G, et al. Incremental constitutive description of SAE5120 steel deformed under hot-working conditions [J]. Int. J. Mech. Sci., 2017, 133: 619
|
17 |
Chen Y Z, Pang Y H, Wang J G, et al. Hot deformation constitutive equation of GH2907 alloy [J]. Rare Metal Mat. Eng., 2019, 48 (11): 3577
|
|
陈益哲, 庞玉华, 王建国等. GH2907合金热变形本构方程 [J]. 稀有金属材料与工程, 2019, 48(11): 3577
|
18 |
Xu M, Mi Z L, Li H, et al. Hot deformation constitutive model of ultra high strength dual phase steel dp1000 based on dislocation density theory [J]. A Chin. J. Mater. Res., 2017, 31(08): 576
|
|
徐梅, 米振莉, 李辉等. 基于位错密度理论的超高强双相钢DP1000热变形本构模型 [J]. 材料研究学报, 2017, 31(08): 576
|
19 |
Quan S J, Song K X, Zhang Y M, et al. Hot deformation behavior and hot working diagram of Ti80 alloy based on MATLAB [J]. Rare Metal Mat. Eng., 2019, 48(11): 3600
|
|
权思佳, 宋克兴, 张彦敏等. 基于MATLAB的Ti80合金热变形行为及热加工图 [J]. 稀有金属材料与工程, 2019, 48(11): 3600
|
20 |
Zhang Q H, Su J H, Zhang X B, et al. High temperature deformation behavior and constitutive equation of as cast C19400 alloy based on MATLAB [J]. T. Mater. Heat Treat., 2019, 40(08): 161
|
|
张启航, 苏娟华, 张学宾等. 基于MATLAB的铸态C19400合金高温变形行为及本构方程 [J]. 材料热处理学报, 2019, 40(08): 161
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|