Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 284-292    DOI: 10.11901/1005.3093.2020.344
ARTICLES Current Issue | Archive | Adv Search |
Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization
YANG Jingcheng1, WANG Lizhong1,2(), ZHONG Zhiping3, ZHENG Yingjun3
1.School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
2.State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
3.TaiCang Jiuxin Precision Toolings Co. , LTD, Suzhou 215400, China
Cite this article: 

YANG Jingcheng, WANG Lizhong, ZHONG Zhiping, ZHENG Yingjun. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization. Chinese Journal of Materials Research, 2021, 35(4): 284-292.

Download:  HTML  PDF(12331KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The flow stress behavior during hot compression of 37CrS4 at 950~1100℃, by strain rate in the range of 0.01 s-1~10 s-1 was investigated by means of single pass hot compression test with Gleeble-1500D thermal simulation machine. The results show that the true stress-strain curve of 37CrS4 special steel presents the occurrence of obvious dynamic recrystallization during high-temperature plastic deformation. The microstructure after hot deformation is typical lath martensite. The ratio of critical strain to peak strain of dynamic recrystallization behavior is 0.77162, and the fitting correlation is 0.9576. The softening mechanism of the material is the synergistic effect of dynamic recovery and dynamic recrystallization. The zener-Hollomon parameter (Z parameter) was introduced to establish the recrystallization kinetic model, and then the segmented flow stress constitutive model of 37CrS4 special steel based on dynamic recovery and dynamic recrystallization was obtained. The average correlation of the constitutive model is 0.9756. The predicted stress of the segmented constitutive model was consistent with the experimental stress, in fact, which could accurately predict the high temperature plasticity of 37CrS4 and the variation of flow stress during deformation.

Key words:  metallic materials      dynamic recrystallization      constitutive model      37CrS4      work hardening      critical strain     
Received:  18 August 2020     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51865057)
About author:  WANG Lizhong, Tel: 13772034988, E-mail: wanglz@mail.xjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.344     OR     https://www.cjmr.org/EN/Y2021/V35/I4/284

Fig.1  Original microstructure of 37CrS4 steel
Fig.2  True stress-strain curve of 37CrS4 steel of 0.1 s-1 with different temperatures (a) and at 1100℃ with different stain rates (b)
Fig.3  Metallographic diagram of microstructure during hot deformation of 37CrS4 in the conditions of at 1100℃, stain rates 0.01 s-1 (a), 1 s-1 (b), 10 s-1 (c) and stain rates 0.1 s-1, at 1050℃ (d), at 1000℃ (e), at 950℃ (f)
Fig.4  Work hardening curve of 37CrS4 steel in conditons of 0.1 s-1 with different temperatures (a) and at 1100℃ with different stain rates (b)
Fig.5  θ-σ curve (a)andlnθ-ε curve (b) in conditions of 1100℃、0.01 s-1 cubic fitting relationship between work hardening rate and stress-strain for 37CrS4 steel
Fig.6  Linear fitting relationship of critical strain model of 37CrS4 steel
Fig.7  Linear relationship between ln[-ln(1-Xd)] and ln[(ε- εc)/εp]
Fig.8  Linear fitting relationship between the logarithm of material parameters and lnZ (a) lnZ with lnΩ; (b) lnZ with lnσ0; (c) lnZ with lnεc and lnεp; (d) lnZ with lnsinh(ασsat)and lnsinh(ασss)
Fig.9  Comparison of model predicted stress and test value (a) at different temperatures and strain rate is 0.1 s-1, (b) at 1100℃ and different stain rates
1 Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization of metallic materials [J]. Rare Metal Mat. Eng., 2019, 48(11): 3764
田宇兴, 刘成, 曹海龙等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
2 Sun Y, Zhou C, Wan Z P, et al. Research status of dynamic recrystallization model of metallic materials [J]. Mater Rev, 2017, 31 (13): 12
孙宇, 周琛, 万志鹏等. 金属材料动态再结晶模型研究现状 [J]. 材料导报, 2017, 31(13): 12
3 Ma W J, Yang X R, Luo L, et al. Dynamic recrystallization model of ultrafine grained pure titanium with composite deformation [J]. Chin. J. Mater. Res., 2020, 34(03): 217
马炜杰, 杨西荣, 罗雷等. 复合形变超细晶纯钛的动态再结晶模型 [J]. 材料研究学报, 2020, 34(03): 217
4 Cao Y, Di H S, Zhang J C, et al. Dynamic recrystallization behavior of 800H alloy [J]. Acta Metall. Sin., 2012, 48(10): 1175
曹宇, 邸洪双, 张洁岑等. 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48(10): 1175
5 Bai Y B. Study on the forming and microstructure change of 30CrMoA thin-walled cylindrical parts [D]. Qinghuangdao: Yanshan University, 2018.
白英博. 30CrMoA薄壁筒形件成形及微观组织变化研究 [D]. 秦皇岛: 燕山大学, 2018
6 Eli S P, Jean G, Mirentxu D, et al. Constitutive description for the design of hot-working operations of a 20MnCr5 steel grade [J]. Mater. Des., 2014, 62: 255
7 Illarionov A G, Trubochkin A V, Shalaev A M, et al. Isothermal de-composition of β-Solid solution in titanium Alloy Ti-10V-2Fe3Al [J]. Met. Sci. Heat Treat., 2017, 58: 674
8 Mejía I, Reyes Calderón F, Cabrera J M. Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP steel micro alloyed with Ti, V and Nb [J]. Mater. Sci. Eng. A, 2015, (644): 374
9 Liu S P, Li D F, Guo S L. Critical conditions of dynamic recrystallization for B4Cp/6061Al composite [J]. Rare Metal Mat. Eng.,2017, 46(07): 1815
10 Ouyang D L, Cui X, Lu S Q, et al. Compression deformation behavior and dynamic recrystallization in β phase region of forged TB6 titanium alloy [J]. Chin. J. Mater. Res., 2019, 33(03): 218
欧阳德来, 崔霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33(03): 218
11 Ouyang D L, Lu S Q, Cui X, et al. Dynamic recrystallization kinetics of β-zone deformation of TB6 titanium alloy [J]. A Chin. J. Mater. Res., 2019, 33(12): 918
欧阳德来, 鲁世强, 崔霞等. TB6钛合金β区变形的动态再结晶动力学 [J]. 材料研究学报, 2019, 33(12): 918
12 Zhao J, Zhong J, Yan F, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti10V-2Fe-3Al [J]. J. Alloy. Compd., 2017(02), 710
13 Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior and constitutive model of 20MnNiMo steel [J]. J SHANGHAIJIAOTONG U, 2016, 50(07): 1041
王梦寒, 王根田, 岳宗敏等. 20MnNiMo钢热变形行为及基于物象的本构模型 [J]. 上海交通大学学报, 2016, 50(07): 1041
14 Hu C. Study on thermoplastic deformation behavior of GH4698 nickel base superalloy [D]. Harbin: Harbin Institute of technology, 2015.
胡超. GH4698镍基高温合金热塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
15 Chen X W, Wang J Y, Yang X Q, et al. Hot deformation behavior and dislocation density evolution of Cr8 alloy steel [J]. J.JILIN. U.: TECHNO. ED., 2020, 50(01): 91
陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报(工学版), 2020, 50(01): 91
16 Puchi-Cabrera E S, Guérin J D, La J G, et al. Incremental constitutive description of SAE5120 steel deformed under hot-working conditions [J]. Int. J. Mech. Sci., 2017, 133: 619
17 Chen Y Z, Pang Y H, Wang J G, et al. Hot deformation constitutive equation of GH2907 alloy [J]. Rare Metal Mat. Eng., 2019, 48 (11): 3577
陈益哲, 庞玉华, 王建国等. GH2907合金热变形本构方程 [J]. 稀有金属材料与工程, 2019, 48(11): 3577
18 Xu M, Mi Z L, Li H, et al. Hot deformation constitutive model of ultra high strength dual phase steel dp1000 based on dislocation density theory [J]. A Chin. J. Mater. Res., 2017, 31(08): 576
徐梅, 米振莉, 李辉等. 基于位错密度理论的超高强双相钢DP1000热变形本构模型 [J]. 材料研究学报, 2017, 31(08): 576
19 Quan S J, Song K X, Zhang Y M, et al. Hot deformation behavior and hot working diagram of Ti80 alloy based on MATLAB [J]. Rare Metal Mat. Eng., 2019, 48(11): 3600
权思佳, 宋克兴, 张彦敏等. 基于MATLAB的Ti80合金热变形行为及热加工图 [J]. 稀有金属材料与工程, 2019, 48(11): 3600
20 Zhang Q H, Su J H, Zhang X B, et al. High temperature deformation behavior and constitutive equation of as cast C19400 alloy based on MATLAB [J]. T. Mater. Heat Treat., 2019, 40(08): 161
张启航, 苏娟华, 张学宾等. 基于MATLAB的铸态C19400合金高温变形行为及本构方程 [J]. 材料热处理学报, 2019, 40(08): 161
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!