Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 277-283    DOI: 10.11901/1005.3093.2020.166
ARTICLES Current Issue | Archive | Adv Search |
Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering
HU Manying1, OUYANG Delai1(), CUI Xia1, DU Haiming2, XU Yong1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Jiangxi 330063, China
2.Jiangxi Normal University, Jiangxi 330022, China
Cite this article: 

HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering. Chinese Journal of Materials Research, 2021, 35(4): 277-283.

Download:  HTML  PDF(4912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Novel TiC reinforced Ti-based composites were synthesized via in situ microwave sintering with nanotubes (MWCNTs) and pure Ti as raw materials. The properties of the composites were investigated, and the formation mechanism of TiC reinforced phase of the composites was discussed. The results show that TiC reinforced phase could be generated in-situ in the Ti-matrix during microwave sintering. When the addition amount of MWCNTs <1% (in mass fraction), the formed TiC was granular-like and distributed uniformly in the dense Ti matrix of fine grains. When the addition amount of MWCNTs >1.5%, the formed TiC turns to be of dendritic morphology, while the Ti matrix is coarsened and the composite becomes porous. Sequentially, the wear mechanism of the composites will change from adhesive wear to abrasive wear due to the addition of MWCNTs. With the increasing addition amount of MWCNTs the microhardness of the composite increases firstly and then decreases. When the addition amount of MWCNTs is 1%, the acquired composite presents a higher microhardness of about 527HV and better wear resistance with the friction coefficient of about 0.35, which are 1.2 times more and 0.4 less than the corresponding terms of the pure Ti respectively.

Key words:  composites      microwave sintering      TiC      in situ synthesis      TiC reinforced titanium composites     
Received:  18 May 2020     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51761029)
About author:  OUYANG Delai, Tel: (0791)83863039, E-mail: ouyangdelai@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.166     OR     https://www.cjmr.org/EN/Y2021/V35/I4/277

Fig.1  Raw materials for preparing titanium matrix composites (a) purification of multi-walled carbon nanotubes, (b) flake pure titanium powder
Fig.2  Experimental procedure
Fig.3  Effect of additive amount of MWCNTs on microstructure of TiC reinforced titanium composites (a) 0.5%MWCNTs, (b) 1%MWCNTs, (c) 1.5%MWCNTs, (d) 2%MWCNTs
Fig.4  XRD spectrum of TiC reinforced titanium composites with different MWCNTs additive amount
Fig.5  Two types morphology of TiC phase in TiC reinforced titanium composites (a) granular, (b) dendritic, (c) EDS analysis of mark A in Fig.5 (a)
Fig.6  Effect of additive amount of MWCNTs on the relative density of TiC reinforced titanium composites
Fig.7  Effect of additive amount of MWCNTs on the hardness of TiC reinforced titanium composites
Fig.8  Friction factor-time curve of composites with different MWCNTs additive amount
Fig.9  Average friction factor and wear volume of composites with different MWCNTs additive amount
Fig.10  Wear microstructure of pure titanium matrix and composites with different MWCNTs additive amount (a) pure titanium, (b) 1% MWCNTs, (c) EDS analysis of mark A in Fig.10 (b)
1 Zai Y, Zhang Y L. Preparation of graphene/titanium matrix composites and their conductive properties [J]. Journal of Yunnan University: Natural Sciences Edition, 2019, 41(03): 551
张在玉, 梁益龙. 石墨烯/纯钛基复合材料的制备及其导电性能的研究 [J]. 云南大学学报(自然科学版), 2019, 41(03): 551
2 Zai Y, Zhang Y L. Preparation and interface analysis of graphene nanosheets reinforced pure titanium matrix composites [J]. Iron Steel Vanadium Titanium, 2019, 40(04): 45
张在玉, 梁益龙. 石墨烯纳米片增强纯钛基体复合材料的制备及界面分析 [J]. 钢铁钒钛, 2019, 40(04): 45
3 Su Y, Zuo Q, Yang G, et al. Compressive properties of the grahpene reinforced titanium composites [J]. Rare Metal Materials and Engineering, 2017, 46(12): 3882
苏颖, 左倩, 杨刚等. 石墨烯增强钛基复合材料的压缩变形行为研究 [J]. 稀有金属材料与工程, 2017, 46(12): 3882
4 Luo J M, Xie J. Microstructure and properties of TiC /Ti2Cu reinforced titanium matrix composites [J]. Transactions of Materials and Heat Treatment, 2019, 40(12): 1
罗军明, 谢娟. TiC/Ti2Cu增强钛基复合材料的组织性能 [J]. 材料热处理学报, 2019, 40(12): 1
5 Wang W, Zhou H X, Wang Q J, et al. Tribological properties of graphene reinforced titanium matrix composites [J]. Ordnance Material Science and Engineering, 2019, 42(01): 26
王伟, 周海雄, 王庆娟等. 石墨烯增强钛基复合材料的摩擦学性能研究 [J]. 兵器材料科学与工程, 2019, 42(01): 26
6 Thompson M S, Nardone V C. In-situ-reinforced titanium matrix composites [J]. Materials Science & Engineering A, 1991, 144(1-2): 121
7 Geng K, Lu W J, Zhang D. Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature [J]. Materials Science & Engineering A, 2003, 3360: 176
8 Lu W J, Zhang D, Zhang X N, et al. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique [J]. Materials ence & Engineering A, 2001, 311(1-2): 142
9 Vasanthakumar K, Ghosh S, Koundinya N T B N, et al. Synthesis and mechanical properties of TiC_x and Ti(C, N) reinforced Titanium matrix in situ composites by reactive spark plasma sintering [J]. Materials Science & Engineering A, 2019, 759: 30
10 Khurram S. Munira, Yifeng Zheng et.al,Microstructure and mechanical properties of carbon nanotubes reinforcedtitanium matrix composites fabricated via spark plasma sintering [J]. Materials Science & Engineering A, 2017, 688: 505
11 Xianglong Sun, Yuanfei Hanet al. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites [J]. Journal of Materials Science & Technology, 2017, 33: 1165
12 Kondoh K, Threrujirapapong T, Umeda J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion [J]. Composites Science & Technology, 2012, 72: 1291
13 Zhu F X, Yi J H, Peng Y D. Sintering response of copper powder metal compact in microwave field [J]. Journal of Central South University (Science and Technology), 2009, 40(01): 106
朱凤霞, 易健宏, 彭元东. 微波烧结金属纯铜压坯 [J]. 中南大学学报(自然科学版), 2009, 40(01): 106
14 Luo J M, Wu X H, Xu J L. Effect of TiC Additive amount s on the Microstructure and Properties of TiC/TC4 Composites Prepared by Microwave Sintering [J]. Rare Metal Materials and Engineering, 2017, 46(11): 3416
罗军明, 吴小红, 徐吉林. TiC添加量对微波烧结TiC/TC4复合材料组织和性能的影响 [J]. 稀有金属材料与工程, 2017, 46(11): 3416
15 Sui Y W, Li B H, Liu A H, et al. Mechanical Properties of Centrifugal Casting Titanium Alloys [J]. Rare Metal Materials and Engineering, 2009, 38(02): 251
隋艳伟, 李邦盛, 刘爱辉, 郭景杰, 傅恒志. 离心铸造钛合金件的力学性能变化规律. 稀有金属材料与工程, 2009, 38(02): 251
16 Orley M F, Thomas E, Rüdiger B. The influence of a small boron addition on the microstructure and mechanical properties of Ti-6Al-4V fabricated by metal injection moulding [J]. Advanced Engineering Materials, 2011, 13(5): 436
17 Mokdad F, Chen D, Liu Z, et al. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite [J]. Carbon, 2016, 104: 64
18 Lin X J, Dong F Y, Zhang S X, et al. Effects of different (TiC+TiB) additive amount on microstructure and mechanical properties of TC4 alloy [J]. Hot Working Technology, 2019, 48(06): 133
林雪健, 董福宇, 张世鑫等. 不同添加量(TiC+TiB)对TC4合金组织和力学性能的影响 [J]. 热加工工艺, 2019, 48(06): 133
19 Braem A, Mattheys T, Neirinck B, et al. Porous titanium coatings through electrophoretic deposition of TiH2 suspensions [J]. Advanced Engineering Materials, 2011, 13: 509
20 Zhao Y, Taya M. Processing of porous NiTi by spark plasma sintering method [J]. Smart Structures and Materials, 2006, 6170: 617013
21 Faras I, Olmos L, Jimnez O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1653
22 Tian J J, Li Z J, Zhang J G, et al. Research Progress of Tribological Properties of Carbon Nanotube Reinforced Metal Matrix Composite [J]. Hot Working Technology, 2017, 46(08): 23-26-31
田娟娟, 李再久, 张吉明等. 碳纳米管增强金属基复合材料摩擦学性能的研究进展 [J]. 热加工工艺, 2017, 46(08): 23-26-31
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[3] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[8] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] QIAN Chunhua, CUI Haitao, WEN Weidong. Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy[J]. 材料研究学报, 2023, 37(2): 145-151.
[14] ZHANG Jiajun, LUO Xinghong, KONG Yafei, ZHANG Guiyuan, LI Yang. Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy[J]. 材料研究学报, 2023, 37(2): 111-119.
[15] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
No Suggested Reading articles found!