Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (3): 231-240    DOI: 10.11901/1005.3093.2020.312
ARTICLES Current Issue | Archive | Adv Search |
In-situ Observation of Effect of La on Grain Refinement in Simulated Coarse-grain Heat-affected Zone of High Strength Low Alloy Steel
ZHOU Feng1,2, CAO Yuxin3, WAN Xiangliang1,2,3()
1.School of Mechanical and Electrical Engineering, Foshan Polytechnic, Foshan 528237, China
2.Band (Foshan) Metallic Composite Materials Co. , Ltd. , Foshan 528000, China
3.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

ZHOU Feng, CAO Yuxin, WAN Xiangliang. In-situ Observation of Effect of La on Grain Refinement in Simulated Coarse-grain Heat-affected Zone of High Strength Low Alloy Steel. Chinese Journal of Materials Research, 2021, 35(3): 231-240.

Download:  HTML  PDF(9778KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The processes of austenite growth and microstructure transformation in the simulated coarse-grain heat-affected zone (CGHAZ) for high strength low alloy steels without and with 0.016% La addition were in-situ observed by means of high temperature laser confocal scanning microscope. The grain refinement in CGHAZ of the steel with 0.016% La was also assessed by using optical- and electron-microscopy. The results show that the complex inclusions of Al-Mg-O, (Mn, Ca)S and TiN may transform to La2O2S in CGHAZ of the steel due to the addition of 0.016% La. La2O2S had lower mismatch with α-Fe, which can effectively promote the formation of acicular ferrites. Meanwhile, many finer dispersed (Ti, Nb)(C, N) precipitates formed in 0.016% La-containing steel can effectively pin the austenite grain boundary, inhibiting the grain growth. Thus, the grains in CGHAZ of 0.016% La-containing steel became finer.

Key words:  metallic materials      grain refinement      in-situ observation      La      high strength low alloy steel      coarse-grain heat-affected zone     
Received:  27 July 2020     
ZTFLH:  430-4099  
Fund: Guangdong Natural Science Foundation(2019A1515011828);Department of Education of Guangdong Province Innovative Research Team in University(2019GKCXTD005)
About author:  WAN Xiangliang, Tel: 15971457600, E-mail: wanxiangliang@wust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.312     OR     https://www.cjmr.org/EN/Y2021/V35/I3/231

SamplesCMnAlSiTiLaON
#10.051.610.0320.250.02100.00180.0029
#20.051.580.0380.240.0230.0160.00130.0024
Table 1  Chemical composition of steels with (#2) and without (#1) La treatment (mass fraction, %)
Fig.1  Schematic illustration of simulated thermal cycle of the CGHAZ
Fig.2  SEM micrographs and EDS mapping images of inclusions in #1 (a, b) and #2 (c, d) steels
Fig.3  Size distributions of inclusions in #1 and #2 steels
SamplesInclusions size/μmInclusions density/mm2Precipitates size/nmPrecipitates density/mm2
AverageStandard deviationAverageStandard deviation
#13.21.421.16521.61.2×104
#21.50.778.42819.01.5×106
Table 2  size of inclusions and precipitates of the investigated steels.
Fig.4  TEM micrographs of the precipitates and corresponding EDS mapping images of the precipitates in #1 (a, b) and #2 (c, d) steels
Fig.5  Size distribution of the precipitates in investigated steels
Fig.6  Process of austenite grain growth in both steels
Fig.7  HTLCM micrographs during the simulated CGHAZ in #1 (a) and #2 (c) steels, and images (b, d) of primary austenite grains after image processing of (a, c) using Adobe Photoshop
SamplesSize of prior austenite grain, μmFraction of AF/%
AverageStandard deviation
#164.8321.2
#249.6235.6
Table 3  Prior austenite grain size and fraction of acicular ferrite of the investigated steels
Fig.8  formation of acicular ferrite in the simulated CGHAZ
Fig.9  Formation of bainite ferrite in the simulated CGHAZ
Fig.10  Optical micrographs in the simulated CGHAZ of #1 (a) and #2 (b) steels
Fig.11  Orientation maps of bcc phases in the simulated CGHAZ of #1 (a) and #2 (b) steels, statistical distribution (c) of grain angles between adjacent grains and crystallographic grain size (d) of simulated CGHAZ in investigated steels.
SamplesCrystallographic grain size/μm
AverageStandard deviation
#15.37.3
#24.25.7
Table 4  Crystallographic grain size of the investigated steels
1 Kitagawa Y., Kawasaki H.. Recent development of high strength and tough welding consumables for offshore structures [J]. Kobelco Techn. Rev., 2013, 32: 1
2 Song F M, Li Z G, Qian Y H, et al. Progress in research of structural steels for large heat input welding [J]. Hot Working Technology, 2006, 35(19): 69
宋凤明, 李自刚, 钱余海等. 大线能量焊接结构用钢的研究进展 [J]. 热加工工艺, 2006, 35(19): 69
3 Kojima A, Yoshii K, Hada T, et al. Development of high HAZ toughness steel plates for box columns with high heat input welding [J]. Nippon Steel Tech Rep., 2004, 90: 39
4 Liu Y, Wan X L, Li G Q, et al. Grain refinement in coarse-grained heat-affected zone of Al-Ti-Mg complex deoxidised steel [J]. Sci Technol Weld Join., 2019, 24(1): 43
5 Zhou B, Li G Q, Wan X L, et al. In-situ observation of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by Zr-Ti combined deoxidation [J]. Met. Mater. Int., 2016, 22(2): 267
6 Revah-Moiseev S, Carroad P A. Effect of Al content on the characteristics of inclusions in Al-Ti complex deoxidized steel with calcium treatment [J]. ISIJ Int., 2014, 54(8):1755
7 Shigesato G, Sugiyama M. Development of in-Situ observation technique using scanning ion microscopy and demonstration of Mn depletion effect on intragranular ferrite transformation in low-alloy steel [J]. J. Electron Microscopy, 2002, 51(6): 359
8 Zou X, Sun J, Matsuura H, et al. In situ observation of the nucleation and growth of ferrite laths in the heat-affected zone of EH36-Mg shipbuilding steel subjected to different heat inputs [J]. Metall. Mater. Trans. B, 2018, 49: 2168
9 Liu Y., Li G. Q., Wan X. L., et al. Toughness improvement by Zr addition in the simulated coarse-grained heat-affected zone of high strength low-alloy steels. Ironmak. Steelmak., 2019, 46: 113
10 Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels [J]. Metall. Mater. Trans. A, 2006, 37(7): 2147
11 Wan X L, Wu K M, Huang G, et al. In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels [J]. Int. J. Min. Met. Mater., 2014, 21(9): 878
12 Wu Y Q. Study of characteristics of inclusions and property of high heat input welding for oxide metallurgy steel developed by Ca deoxidation [J]. Central South University, 2014
吴亦泉. 钙脱氧的氧化物冶金钢中夹杂物及大线能量焊接性能研究 [D]. 湖南: 中南大学, 2014
13 Zhao C L. Research on mechanism of action of rare earth element and process of adding it in molten steel [J]. Angang Technology, 2017, 1: 20
赵成林. 稀土元素在钢水中的作用机理及加入技术研究 [J]. 鞍钢技术, 2017, 1: 20
14 Wang L, Lin Q, Ji J, et al. New study concerning development of application of rare earth metals in steels [J]. J. Alloy Compd., 2006, 408-412: 384
15 Song M M, Song B, Xin W B, et al. Effects of rare earth addition on microstructure of C-Mn steel [J]. Ironmak. Steelmak., 2015, 42 (8): 594
16 M PA, Ferry M, Chandra T. Five decades of the Zener equation [J]. ISIJ Int., 1998, 38(9): 913
17 Dere GE, Sharma H, Petrov RH, et al. Effect of niobium and grain boundary density on the fire resistance of Fe-C-Mn steel [J]. Scripta Mater., 2013, 68: 651
18 Burke J, Turnbull D. Recrystallization and grain growth [J]. Process Metal Physics. 1952, 3: 220
19 Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels [J]. ISIJ Int. 1996, 36(11): 1406
20 Zhang S, Hattori N, Enomoto M, et al. Ferrite nucleation at ceramic/ austenite interfaces [J]. ISIJ Int. 1996, 36(10): 1301
21 Bramfitt B L. Planar disregistry theory of lattice and its application on heterogeneous nuclei of metal [J]. Met. Trans., 1970, 1:1987
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[9] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[10] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[11] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[12] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[13] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[14] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[15] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
No Suggested Reading articles found!