Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 371-380    DOI: 10.11901/1005.3093.2020.283
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr
CUI Lu1, KANG Wenquan1, ZOU Fang1, WEI Wenlan1, LI Zhen1, WANG Peng2()
1.School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China
2.HYCET Engine System (Jiangsu) Co. Ltd. , Yangzhong 212214, China
Cite this article: 

CUI Lu, KANG Wenquan, ZOU Fang, WEI Wenlan, LI Zhen, WANG Peng. High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr. Chinese Journal of Materials Research, 2021, 35(5): 371-380.

Download:  HTML  PDF(14482KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High temperature low cycle fatigue performance of the ultra-supercritical steam turbine rotor steel 10%Cr was studied by controlling the strain and temperature, as well as the characterization of surface morphology and sub-grain structure with SEM and TEM for the steel before and after test. Based on the experimental data the Ramberg-Osgood parameters and Manson-Coffin parameters of the high temperature and low cycle fatigue characteristics of the material were obtained through fitting the stress-strain curves, stress-life curves and strain-life curves. The hysteresis loops and stress-life curves in the initial and final phases of the high temperature low cycle fatigue experiment were analyzed comparatively in terms of the relation between plastic strains with temperature and strain amplitude. Results show that the plastic strain of steel 10%Cr is much obvious under high temperature conditions, and the fatigue life of the material decreases with the increasing strain amplitude. The plastic strain rate experienced three stages with the fatigue cycle, namely the falling stage-the transition stage-the rising stage, and the plastic strain rate has an inflection point with the variation of fatigue cycles. The maximum crack length varied nonlinearly with the number of cycles, and as a result of the high temperature and low cycle fatigue process, the size of sub-grains of the steel increases.

Key words:  metallic materials      high temperature low cycle fatigue      controlling strain and temperature      plastic strain      crack propagation      cyclic softening     
Received:  12 July 2020     
ZTFLH:  TK265  
Fund: National Natural Science Foundation of China(51305348);the Youth Innovation Team of Xi'an Shiyou University(2019QNKYCXTD10);Xi'an Shiyou University Graduate Innovation and Practice Ability Development Program(YCS19113058)
About author:  WANG Peng, Tel: 13730170648, E-mail: wp168@hotmail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.283     OR     https://www.cjmr.org/EN/Y2021/V35/I5/371

CCrMoWNiVNbNMnSiP
0.1210.71.041.040.760.160.050.060.420.10.007
Table 1  Chemical composition of 10%Cr (mass fraction, %)

Rp0.2

/MPa

Rm

/MPa

A

/%

Z

/%

Hardness(HV30)

Ak

/J

E

/MPa

79089517.160.329551213420
Table 2  Mechanical properties of 10%Cr
Fig.1  Specimen geometry of LCF (unit: mm)
Temperature/℃Room temperature(27)500550600
Strain Δε/%0.80.80.80.3~1.1
Table 3  Experimental conditions for high temperature low cycle fatigue
Fig.2  Low cycle fatigue stress-strain of 10%Cr steel at 600℃
Fig.3  Low cycle fatigue stress-life of 10%Cr steel at 600℃
Kˊnˊσˊfbεˊfc
338.77240.0708461.8312-0.03841.0131-0.8984
Table 4  Low cycle fatigue fitting characteristic parameters for 10%Cr
Fig.4  Low cycle fatigue strain-life of 10%Cr steel at 600℃
Fig.5  Hysteresis loop and corresponding stress-life of 10% Cr steel (T=600℃, Δε=1.1%)
Fig.6  Plastic strain of 10% Cr steel at different temperatures
Fig.7  Plastic strain rate (dΔεp/dN)-cyclic period (N) at different strain amplitudes
Fig.8  Crack length of 10%Cr under different stage of cycle life (T=600℃, Δε=1.1%) (a) N=200; (b) N=400; (c) N=600; (d) N=800
Fig.9  Maximum crack length evolution under high tem-perature LCF conditions (T=600℃, Δε=1.1%) for 10%Cr
Fig.10  Crack tip metallographs of 10%Cr before and after corrosion (T=600℃, Δε=1.1%) (a) before corrosion; (b) after corrosion
Fig.11  Metallographs of 10%Cr under different stage of life (T=600℃, Δε=1.1%) (a) N=200; (b) N=400; (c) N=600; (d) N=800
Fig.12  Subgrains TEM morphology of 10%Cr (a) subgrains before experiment; (b) subgrains after experiment
1 Cui L, Wang P, Hoche H, et al. The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading [J]. Mater. Sci. Eng. A, 2013, 560: 767
2 Rauch M, Roos E. Life assessment of multiaxially cyclic loaded turbine components [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31(6): 441
3 Cui L, Shi H M, Zhang T, et al. Creep fatigue crack initiation behavior of 10%Cr heat resistant steel under thermomechanical loading [J]. J. Mater. Eng., 2017, 45(9): 143
崔璐, 石红梅, 张涛等. 热交变载荷下10%Cr耐热钢蠕变疲劳裂纹萌生特征 [J]. 材料工程, 2017, 45(9): 143
4 Avery D Z, King W T, Allison P G, et al. Low-cycle fatigue behavior of thin-sheet extruded aluminum alloy [J]. J Fail. Anal. Preven., 2020, 20(1): 95
5 Nikitin I, Besel M. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045 [J]. Mater. Sci. Eng. A, 2008, 491(1-2): 297
6 Zhang P, Li Z M, Yue H Y. Strain-controlled cyclic deformation behavior of cast Mg-2.99Nd-0.18Zn-0.38Zr and AZ91D magnesium alloys [J]. J. Mater. Sci., 2016, 51(11): 5469
7 Yuan Y L, He G Q, Fan K L, et al. Low cycle fatigue behavior of gray cast iron used for engine [J]. Chinese Journal of Materials Research, 2013, 27(5): 469
袁永立, 何国球, 樊康乐等. 发动机用灰铸铁的低周疲劳行为 [J]. 材料研究学报, 2013, 27(5): 469
8 Zhang Q B, Zhang J X. Fatigue crack growth behavior of a new type of 10%Cr martensitic steel welded joints with Ni-based weld metal [J]. J. Mater. Eng. Perform., 2017, (26): 3921
9 He J, Cui Z, Chen F, et al. The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures [J]. Mater. Des., 2013, 52: 547
10 Nikulin I, Sawaguchi T, Kushibe A, et al. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy [J]. Int. J. Fatigue., 2016, 88: 132
11 Schemmel J. Beschreibung des verformungs-, festigkeits- und versagens- verhaltens von komponenten im kriechbereich unter instationärer beanspruchung mit einem elastisch-viskoplastischen werkstoffmodell [D]. Germany, Universität Stuttgart, D93, 2003
12 Fournie B, Sauzay M, Pineau A. Micromechanical model of the high temperature cyclic behavior of 9~12%Cr martensitic steels [J]. Int. J. Plast., 2011, (27): 1803
13 Simon A, Scholz A, Berger C. Validation of a constitutive material model with anisothermal uniaxial and biaxial experiments[J]. Materialpruefung, 2009, 51(9): 532
14 Götz G. Langzeitentwicklung der mikrostruktur neuer 9~12% chromstähle für den einsatz in kraftwerken[D]. Germany, Universität Erlangen-Nürnberg, 2004
15 Dubey J S, Chilukuru H, Chakravartty J K, et al. Effects of cyclic deformation on subgrain evolution and creep in 9~12% Cr-steels [J]. Mater. Sci. Eng. A, 2005, (406): 152
16 Cui L, Wang P. Two lifetime estimation models for steam turbine components under thermomechanical creep-fatigue loading [J]. Int. J. Fatigue., 2014, (59): 129
17 Wang P, Cui L, Scholz A, et al. Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents [J]. Int. J. Fatigue., 2014, (67): 220
18 Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant [J]. Acta Mater., 1997, 45(1): 4901
19 International Organization for Standardization Technical Committee. Metallic materials-fatigue testing-axial-strain-controlled method: [S]. Geneva: International Organization for Standardization, 2003
20 Wu H L, Zhu Y M, Jia G Q. Low cycle fatigue behaviors of X12CrMoWVNbN10-1-1 steel for rotors at room temperature [J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 841
吴海利, 朱月梅, 贾国庆. X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性 [J]. 北京科技大学学报, 2011, 33(7): 841
21 Li S M. Mechanical Fatigue and Reliability Design [M]. Beijing: Science Press, 2007: 109
李舜酩. 机械疲劳与可靠性设计 [M]. 北京: 科学出版社, 2007: 109
22 Yao W X. Fatigue Life Estimation of Structures [M]. Beijing: Science Press, 2019: 57
姚卫星. 结构疲劳寿命分析 [M]. 北京: 科学出版社, 2019: 57
23 Kun F, Carmona H A, Jr Andrade J S, et al. Universality behind Basquin's law of fatigue [J]. Physical review letters, 2008, 100(9): 094301
24 Wei W L, Han L H, Feng Y R, et al. High temperature low cycle fatigue behavior of 80SH steel for thermal recovery well casing affected by dynamic strain aging [J]. Mater. Mech. Eng., 2019, 43(9): 54
魏文澜, 韩礼红, 冯耀荣等. 动态应变时效影响下热采井套管用80SH钢的高温低周疲劳行为 [J]. 机械工程材料, 2019, 43(9): 54
25 Manson S S. Fatigue: A cpmplex subject-some simple approximations [J]. Experimental Mechanics, 1965, 5(4): 193
26 Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Transactions of the American Society of Mechanical Engineerings, 1953, 22(6): 419
27 Yang B X, Tian X, Li Y, et al. Experimental study on low-cycle fatigue property of 10Cr rotor steel [J]. Journal of Chinese Society of Power Engineering, 2018, 38(1): 74
杨百勋, 田晓, 李杨等. 10Cr转子钢的低周疲劳特性试验研究 [J]. 动力工程学报, 2018, 38(1): 74
28 Wang H, Xu Y L, Sun Q Y, et al. Low-cycle fatigue behavior and deformation substructure of Ti-2Al-2.5Zr alloy at 673 K [J]. Chinese Journal of Materials Research, 2010, 24(2): 165
王航, 徐燕灵, 孙巧艳等. Ti-2Al-2.5Zr合金的高温低周疲劳行为 [J]. 材料研究学报, 2010, 24(2): 165
29 Shi H M. The influence of complex creep fatigue loading on life of untra supercritical steam turbine rotor steel [D]. Xi'an: Xi'an Shiyou University, 2017
石红梅. 复杂蠕变疲劳载荷对超超临界汽轮机转子钢寿命的影响 [D]. 西安: 西安石油大学, 2017
30 Fournier B, Sauzay M, Barcelo F, et al. Creep-fatigue interactions in a 9 pct Cr-1 pct Mo martensitic steel: part II. microstructural evolutions [J]. Metall. Mater. Trans. A, 2009, 40(2): 330
31 Armas A F, Petersen C, Schmitt R, et al. Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater. A, 2005, 329-333: 252
32 Schweizer C, Seifert T, Nieweg B, et al. Mechanisms and modelling of fatigue crack growth under combined low and high cycle fatigue loading [J]. Int. J. Fatigue., 2011, 33(2): 194
33 Zhao P, Xuan F Z. Ratchetting behavior of advanced 9~12% chromium ferrite steel under creep-fatigue loadings: Fracture modes and dislocation patterns [J]. Mater. Sci. Eng. A, 2012, 539: 301
34 Scholz A, Berger C. Deformation and life assessment of high temperature materials under creep fatigue loading [J]. Materialwissenschaft und Werkstofftechnik, 2006, 36(11): 722
35 Mu H. Research on subgrain evolution of 9%~12%Cr steam turbine rotor steel under creep and fatigue load [D]. Xi'an: Xi'an Shiyou University, 2018
穆豪. 蠕变疲劳载荷下9%~12%Cr汽轮机转子钢亚晶粒演变规律研究 [D]. 西安: 西安石油大学, 2017
36 Zhou H W, Bai F M, Yang L, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel [J]. Acta. Metall. Sin., 2020, 56(7): 937
周红伟, 白凤梅, 杨磊等. 1100 MPa级高强钢的低周疲劳行为 [J]. 金属学报, 2020, 56(7): 937
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!