|
|
High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr |
CUI Lu1, KANG Wenquan1, ZOU Fang1, WEI Wenlan1, LI Zhen1, WANG Peng2( ) |
1.School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China 2.HYCET Engine System (Jiangsu) Co. Ltd. , Yangzhong 212214, China |
|
Cite this article:
CUI Lu, KANG Wenquan, ZOU Fang, WEI Wenlan, LI Zhen, WANG Peng. High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr. Chinese Journal of Materials Research, 2021, 35(5): 371-380.
|
Abstract High temperature low cycle fatigue performance of the ultra-supercritical steam turbine rotor steel 10%Cr was studied by controlling the strain and temperature, as well as the characterization of surface morphology and sub-grain structure with SEM and TEM for the steel before and after test. Based on the experimental data the Ramberg-Osgood parameters and Manson-Coffin parameters of the high temperature and low cycle fatigue characteristics of the material were obtained through fitting the stress-strain curves, stress-life curves and strain-life curves. The hysteresis loops and stress-life curves in the initial and final phases of the high temperature low cycle fatigue experiment were analyzed comparatively in terms of the relation between plastic strains with temperature and strain amplitude. Results show that the plastic strain of steel 10%Cr is much obvious under high temperature conditions, and the fatigue life of the material decreases with the increasing strain amplitude. The plastic strain rate experienced three stages with the fatigue cycle, namely the falling stage-the transition stage-the rising stage, and the plastic strain rate has an inflection point with the variation of fatigue cycles. The maximum crack length varied nonlinearly with the number of cycles, and as a result of the high temperature and low cycle fatigue process, the size of sub-grains of the steel increases.
|
Received: 12 July 2020
|
|
Fund: National Natural Science Foundation of China(51305348);the Youth Innovation Team of Xi'an Shiyou University(2019QNKYCXTD10);Xi'an Shiyou University Graduate Innovation and Practice Ability Development Program(YCS19113058) |
About author: WANG Peng, Tel: 13730170648, E-mail: wp168@hotmail.com
|
1 |
Cui L, Wang P, Hoche H, et al. The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading [J]. Mater. Sci. Eng. A, 2013, 560: 767
|
2 |
Rauch M, Roos E. Life assessment of multiaxially cyclic loaded turbine components [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31(6): 441
|
3 |
Cui L, Shi H M, Zhang T, et al. Creep fatigue crack initiation behavior of 10%Cr heat resistant steel under thermomechanical loading [J]. J. Mater. Eng., 2017, 45(9): 143
|
|
崔璐, 石红梅, 张涛等. 热交变载荷下10%Cr耐热钢蠕变疲劳裂纹萌生特征 [J]. 材料工程, 2017, 45(9): 143
|
4 |
Avery D Z, King W T, Allison P G, et al. Low-cycle fatigue behavior of thin-sheet extruded aluminum alloy [J]. J Fail. Anal. Preven., 2020, 20(1): 95
|
5 |
Nikitin I, Besel M. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045 [J]. Mater. Sci. Eng. A, 2008, 491(1-2): 297
|
6 |
Zhang P, Li Z M, Yue H Y. Strain-controlled cyclic deformation behavior of cast Mg-2.99Nd-0.18Zn-0.38Zr and AZ91D magnesium alloys [J]. J. Mater. Sci., 2016, 51(11): 5469
|
7 |
Yuan Y L, He G Q, Fan K L, et al. Low cycle fatigue behavior of gray cast iron used for engine [J]. Chinese Journal of Materials Research, 2013, 27(5): 469
|
|
袁永立, 何国球, 樊康乐等. 发动机用灰铸铁的低周疲劳行为 [J]. 材料研究学报, 2013, 27(5): 469
|
8 |
Zhang Q B, Zhang J X. Fatigue crack growth behavior of a new type of 10%Cr martensitic steel welded joints with Ni-based weld metal [J]. J. Mater. Eng. Perform., 2017, (26): 3921
|
9 |
He J, Cui Z, Chen F, et al. The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures [J]. Mater. Des., 2013, 52: 547
|
10 |
Nikulin I, Sawaguchi T, Kushibe A, et al. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy [J]. Int. J. Fatigue., 2016, 88: 132
|
11 |
Schemmel J. Beschreibung des verformungs-, festigkeits- und versagens- verhaltens von komponenten im kriechbereich unter instationärer beanspruchung mit einem elastisch-viskoplastischen werkstoffmodell [D]. Germany, Universität Stuttgart, D93, 2003
|
12 |
Fournie B, Sauzay M, Pineau A. Micromechanical model of the high temperature cyclic behavior of 9~12%Cr martensitic steels [J]. Int. J. Plast., 2011, (27): 1803
|
13 |
Simon A, Scholz A, Berger C. Validation of a constitutive material model with anisothermal uniaxial and biaxial experiments[J]. Materialpruefung, 2009, 51(9): 532
|
14 |
Götz G. Langzeitentwicklung der mikrostruktur neuer 9~12% chromstähle für den einsatz in kraftwerken[D]. Germany, Universität Erlangen-Nürnberg, 2004
|
15 |
Dubey J S, Chilukuru H, Chakravartty J K, et al. Effects of cyclic deformation on subgrain evolution and creep in 9~12% Cr-steels [J]. Mater. Sci. Eng. A, 2005, (406): 152
|
16 |
Cui L, Wang P. Two lifetime estimation models for steam turbine components under thermomechanical creep-fatigue loading [J]. Int. J. Fatigue., 2014, (59): 129
|
17 |
Wang P, Cui L, Scholz A, et al. Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents [J]. Int. J. Fatigue., 2014, (67): 220
|
18 |
Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant [J]. Acta Mater., 1997, 45(1): 4901
|
19 |
International Organization for Standardization Technical Committee. Metallic materials-fatigue testing-axial-strain-controlled method: [S]. Geneva: International Organization for Standardization, 2003
|
20 |
Wu H L, Zhu Y M, Jia G Q. Low cycle fatigue behaviors of X12CrMoWVNbN10-1-1 steel for rotors at room temperature [J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 841
|
|
吴海利, 朱月梅, 贾国庆. X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性 [J]. 北京科技大学学报, 2011, 33(7): 841
|
21 |
Li S M. Mechanical Fatigue and Reliability Design [M]. Beijing: Science Press, 2007: 109
|
|
李舜酩. 机械疲劳与可靠性设计 [M]. 北京: 科学出版社, 2007: 109
|
22 |
Yao W X. Fatigue Life Estimation of Structures [M]. Beijing: Science Press, 2019: 57
|
|
姚卫星. 结构疲劳寿命分析 [M]. 北京: 科学出版社, 2019: 57
|
23 |
Kun F, Carmona H A, Jr Andrade J S, et al. Universality behind Basquin's law of fatigue [J]. Physical review letters, 2008, 100(9): 094301
|
24 |
Wei W L, Han L H, Feng Y R, et al. High temperature low cycle fatigue behavior of 80SH steel for thermal recovery well casing affected by dynamic strain aging [J]. Mater. Mech. Eng., 2019, 43(9): 54
|
|
魏文澜, 韩礼红, 冯耀荣等. 动态应变时效影响下热采井套管用80SH钢的高温低周疲劳行为 [J]. 机械工程材料, 2019, 43(9): 54
|
25 |
Manson S S. Fatigue: A cpmplex subject-some simple approximations [J]. Experimental Mechanics, 1965, 5(4): 193
|
26 |
Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Transactions of the American Society of Mechanical Engineerings, 1953, 22(6): 419
|
27 |
Yang B X, Tian X, Li Y, et al. Experimental study on low-cycle fatigue property of 10Cr rotor steel [J]. Journal of Chinese Society of Power Engineering, 2018, 38(1): 74
|
|
杨百勋, 田晓, 李杨等. 10Cr转子钢的低周疲劳特性试验研究 [J]. 动力工程学报, 2018, 38(1): 74
|
28 |
Wang H, Xu Y L, Sun Q Y, et al. Low-cycle fatigue behavior and deformation substructure of Ti-2Al-2.5Zr alloy at 673 K [J]. Chinese Journal of Materials Research, 2010, 24(2): 165
|
|
王航, 徐燕灵, 孙巧艳等. Ti-2Al-2.5Zr合金的高温低周疲劳行为 [J]. 材料研究学报, 2010, 24(2): 165
|
29 |
Shi H M. The influence of complex creep fatigue loading on life of untra supercritical steam turbine rotor steel [D]. Xi'an: Xi'an Shiyou University, 2017
|
|
石红梅. 复杂蠕变疲劳载荷对超超临界汽轮机转子钢寿命的影响 [D]. 西安: 西安石油大学, 2017
|
30 |
Fournier B, Sauzay M, Barcelo F, et al. Creep-fatigue interactions in a 9 pct Cr-1 pct Mo martensitic steel: part II. microstructural evolutions [J]. Metall. Mater. Trans. A, 2009, 40(2): 330
|
31 |
Armas A F, Petersen C, Schmitt R, et al. Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater. A, 2005, 329-333: 252
|
32 |
Schweizer C, Seifert T, Nieweg B, et al. Mechanisms and modelling of fatigue crack growth under combined low and high cycle fatigue loading [J]. Int. J. Fatigue., 2011, 33(2): 194
|
33 |
Zhao P, Xuan F Z. Ratchetting behavior of advanced 9~12% chromium ferrite steel under creep-fatigue loadings: Fracture modes and dislocation patterns [J]. Mater. Sci. Eng. A, 2012, 539: 301
|
34 |
Scholz A, Berger C. Deformation and life assessment of high temperature materials under creep fatigue loading [J]. Materialwissenschaft und Werkstofftechnik, 2006, 36(11): 722
|
35 |
Mu H. Research on subgrain evolution of 9%~12%Cr steam turbine rotor steel under creep and fatigue load [D]. Xi'an: Xi'an Shiyou University, 2018
|
|
穆豪. 蠕变疲劳载荷下9%~12%Cr汽轮机转子钢亚晶粒演变规律研究 [D]. 西安: 西安石油大学, 2017
|
36 |
Zhou H W, Bai F M, Yang L, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel [J]. Acta. Metall. Sin., 2020, 56(7): 937
|
|
周红伟, 白凤梅, 杨磊等. 1100 MPa级高强钢的低周疲劳行为 [J]. 金属学报, 2020, 56(7): 937
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|