Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 128-134    DOI: 10.11901/1005.3093.2020.238
ARTICLES Current Issue | Archive | Adv Search |
Damage Tolerance Analysis of Artificial Mechanical Heart Valve
ZHANG Jianhui(), XING Xing, RUAN Yepeng, SUN Zhenguo
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Cite this article: 

ZHANG Jianhui, XING Xing, RUAN Yepeng, SUN Zhenguo. Damage Tolerance Analysis of Artificial Mechanical Heart Valve. Chinese Journal of Materials Research, 2021, 35(2): 128-134.

Download:  HTML  PDF(1471KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structural reliability of artificial mechanical heart valve made of pyrolytic carbon was assessed by means of damage tolerance methodology. In particular, a conservative estimation concerning the possible life-time, or the number of loading cycles was established, in that estimated duration, the pyrolytic carbon artificial heart valve can operate properly in service under given physiological loadings until a pre-existing flaw of minimum size grows gradually to the critical size. It is shown that a minimum pre-existing defect size computed is typically of the order of tens of microns for such pyrolytic carbon valve, for structural life of any pyrolytic carbon component in excess of patient lifetimes. The use of such analysis must be regarded as an essential requirement for the design and quality control of new and the existing pyrolytic carbon artificial heart valve in order to provide maximum assurance of patient safety.

Key words:  composite      pyrolytic carbon for prosthetic heart valve      damage tolerance analyses      pre-existing defect size     
Received:  17 June 2020     
ZTFLH:  TB332  
Fund: Major Science and Technology Projects of Zhejiang Province(2015C01035)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.238     OR     https://www.cjmr.org/EN/Y2021/V35/I2/128

Fig.1  Schematic diagram of domestic-made mechanical heart valve prosthesis. 1-valve orifice; 2-valve leaflet; 3-valve ring; 4-reinforcing ring; 5-stiffening ring; 6-snap ring; 7-pivot; α-leaflet openning angle; β-leaflet closing angle
MaterialsElastic modulus/GPaPoisson's ratioDensity/g·cm-3Coefficient of thermal expansion/m·k-1
Pure pyrolytic carbon300.212.25.5×10-6
Graphite120.151.86.5×10-6
Table 1  Material parameters of the valve leaflet model
Fig.2  Finite element meshing of the valve leaflet
Fig.3  Boundary constraints of the valve leaflet
Fig.4  Operating stress distribution of the valve leaflet applied the first strength theory
Fig.5  Finite element meshing of residual thermal stress of the valve leaflet
Fig.6  Residual thermal stress distribution of the valve leaflet
1 Zhang J H, Wang G M. Pyrocarbon for Artificial Mechanical Heart Valve [M]. Beijing: Science Press, 2016
张建辉, 王根明. 人工机械心脏瓣膜用热解炭 [M]. 北京: 科学出版社, 2016
2 Pucknat D, Liebich R. A damage tolerance analysis for complex structures [J]. Arch. Appl. Mech., 2016, 86: 669
3 Chen C Y. Fatigue and Fracture [M]. Wuhan: Huazhong University of Science & Technology Press, 2010
陈传尧. 疲劳与断裂 [M]. 武汉: 华中科技大学出版社, 2010
4 Zhao S B. Design methods and design data for damage tolerance [J]. J. Mach. Des., 2000, 17(5): 4
赵少汴. 损伤容限设计方法和设计数据 [J]. 机械设计, 2000, 17(5): 4
5 Ritchie R O. Fatigue and fracture of pyrolytic carbon: a damage-tolerant approach to structural integrity and life prediction in "ceramic" heart valve prostheses [J]. J. Heart Valve Dis., 1996, 5(suppl. 1): S9
6 Ryder J K, Cao H. Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics prosthetic heart valve [J]. J. Heart Valve Dis., 1996, 5(): S86
7 Ritchie R O, Dauskardt R H, Pennisi F J. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices [J]. J. Biomed. Mater. Res., 1992, 26: 69
8 Xu Z Y, Zhang B R, Wang G M, et al. Pure pyrolytic carbon double-leaf type heart valve prosthesis [P]. Chin Pat, CN 200820231115.1, 2009
徐志云, 张宝仁, 王根明等. 纯热解炭双叶型人工心脏瓣膜 [P]. 中国专利, CN200820231115.1, 2009
9 Cao H. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications [J]. J. Heart Valve Dis., 1996, 5(): S32
10 Zhang J H, Li X P, Yang H, et al. Artificial heart valve pyrolytic carbon and testing method for fracture toughness of pyrolytic carbon composite material [P]. Chin Pat, ZL201310115477.X, 2015
张建辉, 李学鹏, 杨欢等. 人工心瓣热解炭及其复合材料断裂韧性测试方法 [P]. 中国专利, CN201310115477.X, 2015
11 Zhang J H, Ruan Y P, Sun Z G. Fracture toughness and fractography of pyrolytic carbon for artificial heart valve [J]. Chin. J. Biomed. Eng., 2020, 39: 129
张建辉, 阮叶鹏, 孙振国. 人工心瓣用热解炭断裂韧性研究及断口形貌分析 [J]. 中国生物医学工程学报, 2020, 39: 129
12 Cheng J, Zhao S S. Fracture Mechanics [M]. Beijing: Science Press, 2006
程靳, 赵树山. 断裂力学 [M]. 北京: 科学出版社, 2006
13 Wang R, Li H P, Zheng G M, et al. Review of domestic artificial heart valve [J]. Adv. Mater. Ind., 2011, (8): 13
王睿, 李海平, 郑光明等. 国产人工心脏瓣膜综述 [J]. 新材料产业, 2011, (8): 13
14 Ritchie R O, Dauskardt R H, Yu W K, et al. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications [J]. J. Biomed. Mater. Res., 1990, 24: 189
15 Dauskardt R H, Ritchie R O, Takemoto J K, et al. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: Role of small cracks in life prediction [J]. J. Biomed. Mater. Res., 1994, 28: 791
16 Kruzic J J, Kuskowski S J, Ritchie R O. Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses [J]. J. Biomed. Mater. Res., 2005, 74A: 461
17 Gilpin C B, Haubold A D, Ely J L. Fatigue crack growth and fracture of pyrolytic carbon composites [A]. Proceedings of the 6th International Symposium on Ceramics in Medicine [C]. Oxford: Butterworths-Heinemann1993: 217
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!