Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (1): 36-44    DOI: 10.11901/1005.3093.2020.149
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Properties of B-doped MnO2
XIA Ao(), ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
Cite this article: 

XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2. Chinese Journal of Materials Research, 2021, 35(1): 36-44.

Download:  HTML  PDF(2816KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

B3+ doped birnessite-MnO2 anode materials were successfully prepared by one-step hydrothermal method, and then characterized by XRD, Raman, SEM, TEM, XPS and electrochemical performance tests. The pure- and doped-MnO2 particles were globular nano-flowers composed of two-dimensional nano flakes . The thickness of nano flakes decreased after B3+ doping, thus the transmission path of Li-ions and electrons in the bulk material was shortened. The charge transfer resistance of birnessite-MnO2 decreased obviously after a proper amount of B3+ ions doping. The B-MnO2 doped with 9% B3+ showed the optimal electrochemical performance. In conditions of the current density of 100 mA·g-1 and 1000 mA·g-1, the initial charging specific capacities were 855.1 mAh·g-1 and 599 mAh·g-1, respectively. After 100 cycles the corresponding reversible capacities still remained 805 mAh·g-1 and 510.3 mAh·g-1, and the respective retention rates were 94.1% and 85.2% respectively.

Key words:  synthesizing and processing technics for materials      lithium-ion battery      hydrothermal method      MnO2      electrochemical performance     
Received:  03 May 2020     
ZTFLH:  TM912.9  
Fund: China Postdoctoral Science Foundation(2016M592746);Doctor Initiation Funding Scheme of the Shaanxi University of Science & Technology(BJ15-04)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.149     OR     https://www.cjmr.org/EN/Y2021/V35/I1/36

Fig.1  XRD patterns of B-doped MnO2 samples
Samplea=b/nmc/nmd(003)/nm

Cell volume

/nm

Angle/(°)
B0M0.285072.162210.7121115.21790×90×120
B3M0.286992.129880.7075315.192
B9M0.284222.152750.7098015.060
B15M0.284002.130790.7067514.884
Table 1  Lattice parameters of all samples obtained from XRD patterns
Fig.2  Raman spectra of B-doped MnO2 samples
Fig.3  SEM images of B0M (a, e), B3M (b, f), B9M (c, g), B15M (d, h) samples
Fig.4  TEM images of B9M
Fig.5  XPS survey spectra of B0M and B9M (a), B1s spectra of B9M (b), Mn2p spectra of B0M (c), Mn2p spectra of B9M (d), O1s spectra of B0M (e) and O1s spectra of B9M (f)
SamplesElement content (XPS)Surface chemical state
Mn/OK/MnMn3+/Mn4+O1/O2
B0M0.21240.02810.942.89
B9M0.20890.02281.072.74
Table 2  Element state analysis calculated through XPS results
Fig.6  Crystal structure diagram of pure MnO2 (a) and B3+ doped MnO2 (b)
Fig.7  Cycle voltammetry (CV) curves (a) and first charge/discharge curves of samples (b)
Fig.8  Cycling performance of samples at 100 mA·g-1 (a); Cycling performance of samples at 1000 mA·g-1 (b); Rate performance of samples (c) and EIS of samples after three cycles at 100 mA·g-1 (d)
SampleRs/Ω·cm2E/%CPE1/FE/%Rct/Ω·cm2E/%CPE2(S-sec^n)E/%
B0M4.693.241.29×10-57.82510.793.790.01442.776
B3M9.592.7065.04×10-69.16611.783.8460.00851.997
B9M7.332.699.97×10-610.098.394.420.013052.184
B15M4.693.926.258×10-66.4219.523.290.077367.41
Table 3  EIS model parameters for the synthesized samples
1 Li L, Jacobs R, Gao P, et al. Origins of large voltage hysteresis in high energy-density metal fluoride lithium-Ion battery conversion electrodes [J]. J. Am. Chem. Soc., 2016, 138 (8): 2838
2 Peng L, Zhu Y, Peng X, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage [J]. Nano. Lett., 2017, 17 (10): 6273
3 Zhao K, Liu F, Niu C, et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes [J]. Adv. Sci., 2015, 2 (12): 1500154
4 Zhu C, Usiskin R E, Yu Y, et al. The nanoscale circuitry of battery electrodes [J]. Science., 2017, 358 (6369): 1400
5 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature., 2001, 414(6861): 359
6 Zhang S S, Xu K, Jow T R. Low temperature performance of graphite electrode in Li-ion cells [J]. Electrochim. Acta, 2002, 48 (3): 241
7 Aravindan V, Lee Y S, Madhavi S. Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes [J]. Adv. Energy. Mater., 2015, 5(13): 1
8 Sawai K, Ohauku T. Factors affecting rate capability of graphite electrodes for lithium-ion batteries [J]. J. Electrochem. Soc., 2003, 150(6): A674
9 Julien C, Massot M, Bassour-Hodjean R, et al. Raman spectra of birnessite manganese dioxides [J]. Solid State Ionics., 2003, 159(3-4): 345
10 Hu Z M, Xiao X, Chen C, et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability [J]. Nano Energy., 2015, 11: 226
11 Xu S, Lu L, Liu L, et al. Hydrothermal synthesis of Cu-doped β-MnO2 nanorods as cathode material for lithium ion battery applications [J]. J. Nanosci. Nanotech., 2017, 17(3): 2109
12 Jian Z, Wang S P, Yu J X, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries [J]. J. Solid State Electr., 2014, 18(6): 1585
13 Wang X, Yin M, Xue H, et al. Simple microwave synthesis and improved electrochemical performance of Nb-doped MnO2/reduced graphene oxide composite as anode material for lithium-ion batteries [J]. Ionics., 2017, 24(9): 2583
14 Zhao K N, Sun C L, et al. Surface gradient Ti-Doped MnO2 nanowires for high-rate and long-life lithium battery [J]. ACS. Appl. Mater. Inter., 2018, 10(51): 44376
15 Chi H Z, Zhu H, Gao L. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor [J]. J. Alloys. Compd., 2015, 645: 199
16 Andrade Neto N F, Zanatta P, Nascimento L E, et al. Characterization and photoluminescent, photocatalytic and antimicrobial properties of Boron-doped TiO2 nanoparticles obtained by microwave-assisted solvothermic method [J]. J. Electron. Mater., 2019, 48(5): 3145
17 Biggin P C, Smith G R, Shrivastava I, et al. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations [J]. BBA--Biomembranes., 2001, 1510(1-2): 1
18 Gao T, Glerup M, Krumeich F, et al. Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers [J]. J. Phys. Chem. C., 2008, 112(34): 13134
19 Wei Y J, Yan L Y, Wang C Z, et al. Effects of Ni doping on [MnO6] octahedron in LiMn2O4 [J]. J. Phys. Chem. B, 2004, 108(48): 18547
20 Santos V P, Soares O S G P, Bakker J J W, et al. Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties [J]. J. Catal., 2012, 293: 165
21 Gao T, Fjellv G H, Norby P. A comparison study on Raman scattering properties of α- and β-MnO2 [J]. Anal Chim Acta., 2009, 648(2): 235
22 Liu Y, Zhang P Y. Removing Surface hydroxyl groups of Ce-modifified MnO2 to signifificantly improve its stability for gaseous ozone decomposition [J]. J. Phys. Chem. C., 2017, 121(42): 23488
23 Mavel G, Escard J, Costa P, et al. ESCA surface study of metal borides [J]. Surf. Sci., 1973, 35: 109
24 Jia J J, Callcott T A, Shirley E L, et al. Resonant Inelastic X-Ray scattering in hexagonal boron nitride observed by soft-x-ray fluorescence spectroscopy [J]. Phys. Rev. Lett., 1996, 76(21): 4054
25 Hao S J, Zhang B W, Feng J Y, et al. Nanoscale ion intermixing induced activation of Fe2O3/MnO2 composites for application in lithium ion batteries [J]. J. Mater. Chem. A, 2017, 5(18): 8510
26 Yu Q, Wang C, Li X Y, et al. Engineering an effffective MnO2 catalyst from LaMnO3 for catalytic methane Combustion [J]. Fuel., 2019, 239: 1240
27 Yan L, Shen C, Niu L, et al. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2 [J]. ChemSusChem., 2019, 12(15): 3571
28 Zhao L, Wang W, Zhao H, et al. Controlling oxygen vacancies through gas-assisted hydrothermal method and improving the capacitive properties of MnO2 nanowires [J]. Appl. Surf. Sci., 2019, 491(15): 24
29 Han X, Gui X, Yi T F, et al. Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries [J]. Curr. Opin. Solid St. M., 2018, 22(4): 109
[1] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[3] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[4] XIAO Lan, YU Wenhua, HUANG Hao, WU Aimin, JIN Xiaozhe. Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries[J]. 材料研究学报, 2022, 36(11): 821-828.
[5] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[6] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[7] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[8] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[9] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[10] WANG Fang, ZHOU Baoyu, FENG Wei, LEI Jialiu, JIANG Yufeng, WANG Qidi. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials[J]. 材料研究学报, 2020, 34(4): 277-284.
[11] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[12] QIN Yanli,YANG Yan,ZHAO Pengyu,LIU Zhenyu,NI Dingrui. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. 材料研究学报, 2020, 34(2): 92-100.
[13] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[14] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[15] Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. 材料研究学报, 2019, 33(7): 481-487.
No Suggested Reading articles found!