Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 545-551    DOI: 10.11901/1005.3093.2020.136
ARTICLES Current Issue | Archive | Adv Search |
Effect of Electric Field on Solidification Structure of Directionally Solidified Peritectic Alloys
WANG Guotian1(), WANG Qiang1, GUO Jianhua1, DING Hongsheng2, SUN Hongzhe2
1.College of Automobile and Transportation Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
2.National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

WANG Guotian, WANG Qiang, GUO Jianhua, DING Hongsheng, SUN Hongzhe. Effect of Electric Field on Solidification Structure of Directionally Solidified Peritectic Alloys. Chinese Journal of Materials Research, 2022, 36(7): 545-551.

Download:  HTML  PDF(13969KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is known that the AMPD-4.1% SCN (Aminomethyl Propanediol-4.1% Succinonitrile) transparent hypoperitectic polymer alloy and the Ni3Al hypoperitectic alloy present the similarity in directional solidification behavior, therefore, the former was selected as the reference material to simulate the effect of DC current on the directional solidification process of the later one. During the experiment, the real-time photo shooting and real-time temperature recording were carried out by the microscope photosensitive device (CCD) and an intelligent communication temperature measuring instrument. The results show that under the action of electric field, the primary β phase particles of the directionally crystallized subperitectic alloy migrate to the positive pole, which facilitates the peritectic reaction by making the composition of liquid phase near peritectic point at the frontier of solidification interface. The special growth morphology of dendrite tip splitting and the dendrite spacing decreasing of directionally solidified dendrite tip under the action of electric field may be mainly caused by Joule heating effect caused by electric field and supercooling caused by solute enrichment. Last but not least, results of the similar experiment for Ni3Al-based alloy Ni-20Al-10Fe-0.2B proved fairly well the above observed growth morphology of the AMPD-4.1% SCN transparent hypoperitectic polymer alloy.

Key words:  metallic materials      DC directional solidification      peritectic alloy      solidification interface     
Received:  24 April 2021     
ZTFLH:  TG244.3  
Fund: National Natural Science Foundation of China(51471062);Doctor Foundation Project of Heilongjiang Institute of Technology(2019BJ03);Research Project of Basic Scientific Research Business Expenses of Heilongjiang Provincial Undergraduate Colleges and Universities in 2021(2021GJ10);Program for Provincial-Level Leading Talents Team Training of Heilongjiang Institute of Technology(2020LJ04)
About author:  WANG Guotian, Tel: 13836023153, E-mail: guotianw@139.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.136     OR     https://www.cjmr.org/EN/Y2022/V36/I7/545

Fig.1  Phase diagram of AMPD-SCN equilibrium transformation[20]
Experimental materials

Resistivity

/Ω·m

Melting entropy/

J·mol-1·K-1

Melting point/K
AMPD-SCN47056.6365
Table 1  Physical properties parameters of peritectic alloys[20,22]
Fig.2  Assembly drawing of physical simulation experiment 1 (10) heat conducting plate; 2 glass plates; 3 (11) wiring post; 4 (12) heat conducting block; 5 pipes; 6 (15) hot (cold) end circulating pump; 7 (13) heater and thermocouple; 8 (14) heating oil; 9 melting zone
Fig.3  Microstructure of AMPD-4.1%SCN at early stage of solidification
Fig.4  Directional solidification growth morphology of hypoperitectic simulator under action of 1.2 mA DC current (a) 0 s; (b) 2 s; (c) 4 s; (d) 6 s; (e) 8 s; (f) 10 s
Fig.5  Directional solidification growth morphology of hypoperitectic simulator (a) 0 s; (b) 3 s; (c) 6 s; (d) 9 s
Fig.6  Directional crystallization morphology of hypoperitectic simulator with current intensity of 1.2 mA (a) 0 s; (b) 9 s
Fig.7  Sketch map of voltaic bias coagulation in solid
Fig.8  Schematic explanation to the influence of DC on the evolution of dendrite tip morphology
Fig.9  Principle diagram of dendrite tip splitting
Fig.10  Directional solidification of Ni-20Al-10Fe-0.2B under electric current (a) initial solidification stage; (b) dendrite splitting stage
1 Raju S. V., Oni A. A., Godwal B. K., et al. Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure. Journal of Alloys and Compounds, 2015, 619: 616
doi: 10.1016/j.jallcom.2014.09.012
2 Ivanovski N., UmiĆeviĆ A., Beloševice čavor. J., et al. Local structure study of Fe dopants in Niedeficit Ni3Al alloys. Journal of Alloys and Compounds, 2015, 651: 705
doi: 10.1016/j.jallcom.2015.08.171
3 Zhang Hongjian, Xiao Jianfeng, Wen Weidong, et al. Study on a statistical unit cell model for Ni3Al-base superalloy. Mechanics of Materials, 2016, 98: 1
doi: 10.1016/j.mechmat.2016.03.004
4 Wang Jin, Yin jianjun, Ding yutian, et al. Effect of direct current electric field on the microstructure of ZA27 alloy [J]. Foundry, 2003, 52(2): 84
5 Xu Q G, Wu B L, Wan G, et al. Effect of direct current electric fieid on structure of directionally solidified Al-4.5%Cu alloy [J]. J.Aeronaut. Mater., 2006, 26(1): 16
徐前刚, 武保林, 万 刚 等. 直流电场对 Al-4.5%Cu合金定向凝固组织的影响[J]. 航空材料学报, 2006, (1): 16
6 Liao X. L., Zhai Q. J., Song C, et al. Effects of electric current pulse on stability of solid/liquid interface of Al-4.5%Cu alloy during directional solidification [J]. Materials Science and Engineering A, 2007, 466(1-2): 56
doi: 10.1016/j.msea.2007.02.022
7 Misra A K. Effect of electric potentiasons on solidification of near eutectic Pn-Sb-Sn alloy [J]. Materials Letter. Apr, 1986, 4: 176
8 Misra A K. A novel solidification technique of metals and alloys:Under the influence of applied potential [J]. Metall. Trans., 1985, 16(7): 1354
9 Misra A K. Misra techniquel applied to solidification of cast iron [J]. Metall. Trans A., 1986, 17A: 358
10 Ahmed S, McKannan E. Control of γ' morphologyin nickel base superalloys through alloy design and densification processing under electric field [J]. Mater. Sci. Technol., 1994, 10: 941
doi: 10.1179/mst.1994.10.11.941
11 Ding H S, Zhang Y, Jiang S Y, et al. Influences of pulse electric current treatment on solidification microstructures and mechanical properties of Al-Si piston alloys [J]. China Foundry, 2009, 6(1): 24
12 Liu J, Li Z H, Cen Q H, et al. Effect of external electric field on solidification structure of alloy. [J]. Foundry, 2012, 61(08): 877
刘 谨, 黎振华, 岑启宏, 蒋业华. 外加电场对合金凝固组织的影响 [J]. 铸造, 2012, 61(08): 877
13 He S X, Wang J, Zhou R H. Application of electric current in metal solidification [J]. Special Casting & Nonferrous Alloys, 2001(05): 28
何树先, 王 俊, 周尧和. 电流在金属凝固过程中的应用 [J]. 特种铸造及有色合金, 2001, (05): 28
14 Zheng L, Li S S. Microstructure and high temperature stress rupture properties of Ru-containing directionally solidified Ni-base superalloy [J]. Key Engineering Materials, 2007: 507
15 Su Y Q. Study on the induction solidification process of TiAl intermetallic compound [D]. Harbin: Harbin Institute of Technology, 1997
苏彦庆. TiAl金属间化合物感应凝壳熔炼过程研究 [D]. 哈尔滨: 哈尔滨工业大学, 1997
16 PAN X H, JIN W Q, AI F, et al. Effect of surface-tension driven convection on interfacial boundary layer during BaB2O4 single crystal growth [J]. Journal of Inorganic Materials, 2007, 22(6): 1239
潘秀红, 金蔚青, 艾 飞 等. 表面张力对流对BaB2O4晶体生长界面边界层的作用 [J]. 无机材料学报, 2007, 22(6): 1239
doi: 10.3724/SP.J.1077.2007.01239
17 Hong Y, Pan X H, Zhang X H, et al. The formation mechanism of β-BaB2O4 dendrite [J]. Science China, 2007, 37(11): 1430
洪 勇, 潘秀红, 张学华 等. β-BaB2O4枝蔓晶的形成机理 [J]. 中国科学: E辑, 2007, 37(11): 1430
18 Sturz L, Witusiewicz V T, Hechtu, et al. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth [J]. Journal of Crystal Growth, 2004, 270: 273
doi: 10.1016/j.jcrysgro.2004.06.004
19 Witusiewicz V. T., Sturz L., Hecht U, et al. Thermodynamic description and unidirectional solidification of eutectic organic alloys: IV. Binary system neopentylglycol-succinonitrile and amino-methyl-propanediol-succinonitrile [J]. Acta Materialia, 2005, 53(1): 173
doi: 10.1016/j.actamat.2004.09.014
20 Sun H Z. Effects of DC cuttent on directional solidification process of TiAl-based alloy [D]. Harbin: Harbin Institute of Technology, 2013
孙宏喆. 直流电流对TiAl基合金定向凝固过程的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2013
21 Hu H Q. Principle of Metal Solidification [M]. Beijing: China Machine Press, 2000: 93
胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 2000: 93
22 Han Zhicheng. Electromagnetic Metallurgical Technology and Equ-ipment [M]. Beijing: Metallurgical Industry Press, 2008: 217
韩至成. 电磁冶金技术及装备 [M]. 北京: 冶金工业出版社, 2008: 217
23 Laxmanan V. The impurity effect in the space shuttle dendritic growth experiments with succinonitrile [J]. Materials Research Bulletin, 1998, 33(6): 867
doi: 10.1016/S0025-5408(98)00053-1
24 Huang L G, Fu D J, Gao Z Y. Application of continuous electric field in metal solidification [J]. J. Mater. Eng., 2011, (4): 94
黄立国, 付大军, 高志玉. 连续电流场在金属凝固过程中的应用研究 [J]. 材料工程, 2011, (4): 94
25 Gu G D, Xu Y Y, An G Y, et al. Cellular growth of Sn-5%Bi alloy in electric field [J]. Chin. J. Mech. Eng., 1991, 27(5): 37
顾根大, 徐燕允, 安阁英 等. 电场作用下Sn-5%Bi合金的胞晶生长 [J]. 机械工程学报. 1991, 27(5): 37
26 Langer J S. Chance and matter, Lectures on the Theory of Pattern Formation [M]. North Holland, 1987: 629
27 Kessler D A, Koplik J, Levine H. Pattern selection in fingered growth phenomena [J]. Advances in Physics, 1988, 37(3): 255
doi: 10.1080/00018738800101379
28 Karma A, Rappel W J. Qyabtitative phase field modeling of dendrictic growth in two and three dimensions [J]. Physical Review E, 1998, 57(4): 4323
doi: 10.1103/PhysRevE.57.4323
29 Nagashio K, Kuribayashi K. Growth mecanism of twin-related and twin-free facet Si sendrites [J]. Acta Materialia, 2005, 53(10): 3021
doi: 10.1016/j.actamat.2005.03.022
30 Wang G T, Ding H S, Chen R R, et al. Effect of current intensity on microstruture of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique [J]. Acta. Metall. Sin., 2017, 53(11): 1461
王国田, 丁宏升, 陈瑞润 等. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响 [J]. 金属学报, 2017, 53(11): 1461
31 Xu Y Y, Gu G D, An G Y, et al. Effect of electric field on the Al-Cu eutectic interlamellar spacing [J]. Foundry, 1991, (3): 5
徐雁允, 顾跟大, 安阁英 等. 电场对Al-Cu共晶片间距的影响 [J]. 铸造, 1991, (3): 5
32 Gu G, Xu Y, An G, et al. Cellular growth of Sn-50% Bi alloy in electric field [J]. Chinese Mechanical Engineering, 1991, 27(5): 37
33 Michaela Wiegel E K, Matthiesen H D. Determination of the peltier coefficient of germanium in a vertical Bridgman-Stockbargerfurnace [J]. J. Cryt. Growth., 1997, 174: 197
34 Corre S, Duffar T, Bernard M, et al. Numerical simulation andvalidation of the Peltier pulse marking of solid/liquid interfaces [J]. J. Cryt. Growth., 1997, 180: 604
doi: 10.1016/S0022-0248(97)00257-1
35 Kessler D A, Koplik J, Levine H. Pattern selection in fingered growth phenomena [J]. Advances in Physics, 1988, 37(3): 255
doi: 10.1080/00018738800101379
36 Michaela Wiegel E K, Matthiesen H D. Determination of the peltier coefficient of germanium in a vertical Bridgman-Stockbargerfurnace [J]. J. Cryt. Growth., 1997, 174: 197
37 Corre S, Duffar T, Bernard M, et al. Numerical simulation andvalidation of the Peltier pulse marking of solid/liquid interfaces [J]. J. Cryt. Growth., 1997, 180: 604
doi: 10.1016/S0022-0248(97)00257-1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!