Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 143-153    DOI: 10.11901/1005.3093.2020.133
ARTICLES Current Issue | Archive | Adv Search |
Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy
CHEN Yang1, TU Jian1,2(), ZHANG Yanbin1, TAN Li1, YIN Ruisen3, ZHOU Zhiming1,2
1.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3.School of Aerospace Engineering, Chongqing University, Chongqing 400044, China
Cite this article: 

CHEN Yang, TU Jian, ZHANG Yanbin, TAN Li, YIN Ruisen, ZHOU Zhiming. Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy. Chinese Journal of Materials Research, 2021, 35(2): 143-153.

Download:  HTML  PDF(31572KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of deformation (deformation degree and deformation temperature) and annealing (annealing temperature and annealing time) on the microstructural evolution of Fe47Mn30Co10Cr10B3 high-entropy alloy were systematically investigated by electron backscattered diffraction and electron channeling contrast. The dominate deformation mechanism changes from dislocation slip to transformation-induced plasticity with the decreasing deformation temperature in case the strain is small. At room temperature, with the increasing strain the dominate deformation mechanism changes from dislocation slip to transformation-induced plasticity while second phase particles precipitate along the rolling direction. During recrystallization annealing treatment of the heavy deformed alloy, with the increasing annealing temperature the alloy presented the following microstructure evolution namely, changed from deformed microstructure (600℃-5 min) to partial recrystallization (800℃-5 min) and then complete recrystallization (1000℃-5 min). For the annealing at temperature (1000℃) with the increasing annealing time the microstructural evolution undergoes partial recrystallization (1 min) and complete recrystallization (5,15 min). In addition, the phase component transforms from single phase (γ) to dual phase (γ + ε). The annealing treatments do not change the distribution of second phase particles along the rolling direction. The high-entropy alloy shows a comprehensive mechanical performance with yield strength of 326 MPa, tensile strength of 801.9 MPa and elongation 26.8%, respectively.

Key words:  metallic materials      high-entropy alloy      transformation-induced plasticity      strength-ductility     
Received:  21 April 2020     
ZTFLH:  TG113.1  
Fund: Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN201801139);China Postdoctoral Science Foundation Funded Project(2018M632250)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.133     OR     https://www.cjmr.org/EN/Y2021/V35/I2/143

Fig.1  Schematic illustrations of experimental sample preparation (a) and flow chart of the experimental process (b)
Fig.2  Calculated mole fraction of equilibrium phases at various temperatures for the Fe47Mn30Cr10Co10B3 (a), Inverse pole figure (IPF) map (b),phase map showing dual phase (c) and grain boundaries (GB) showing anneal twinning boundaries (TB) (d)
Fig.3  Microstructure of homogenized samples with 10% deformation under different deformation temperatures: (a1~a3) cryogenic temperature; (b1~b3) room temperature (26℃); (c1~c3) high temperature (800℃)
Fig.4  EBSD maps of homogenized samples with 10% deformation degree under different deformation temperatures: (a1~a4) cryogenic temperature; (b1~b4) room temperature (26℃); (c1~c4) high temperature (800℃)
Fig.5  Microstructure of homogenized samples after deformation at room temperature with deformation degree: (a1~a3) R-10%, (b1~ b3) R-30% and (c1~c3) R-60%
Fig.6  Recrystallization microstructure of samples with 60% deformation at room temperature after annealing at 600℃ (a1~a3), 800℃ (b1~b3) and 1000℃ (c1~c3)
Fig.7  Microstructure of samples with 60% deformation after annealing at 1000℃ for 1 min (a1~a3), 5 min (b1~b3) and 15 min (c1~c3)
Fig.8  EBSD maps of samples with 60% deformed after annealing at 1000℃ for 1 min (a1~a3); 5 min (b1~b3) and 15 min (c1~c3)
Fig.9  Hardness change (a, b), engineering stress-strain curve (c) and fracture morphology (d) of samples after different treatments
Fig.10  Schematic illustrations of microstructure evolution of Fe47Mn30Co10Cr10B3 interstitial dual-phase HEA samples after different deformation and annealing
1 Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Mater. Res. Lett., 2014, 2(3): 107
2 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta. Mater., 2017, 122: 448
3 Chen P Y, Lee C, Wang S Y, et al. Fatigue behavior of high-entropy alloys: A review [J]. Sci. China. Technol. Sci., 2018, 61(2): 168
4 Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloy. Compd., 2018, 760: 15
5 Li W, Liu P, Liaw P K. Microstructures and properties of high-entropy alloy films and coatings: a review [J]. Mater. Res. Lett., 2018, 6(4): 199
6 Qiu Y, Gibson M A, Fraser H L, et al. Corrosion characteristics of high entropy alloys [J]. Mater. Sci. Technol., 2015, 31(10): 1235
7 Guo J, Tang C, Rothwell G, et al. Welding of high entropy alloys-A review [J]. Entropy, 2019, 21(4): 431
8 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta. Mater., 2013, 61(15): 5743
9 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta. Mater., 2014, 62: 105
10 Li Z Z., Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227
11 Liu Y, Xu K,Tu J, et al. Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy Alloy [J]. Chin. J. Mater. Res., 2020, 34(7): 535
刘怡, 徐康, 涂坚. 高熵合金FeCoNiTi的微观组织演变和强韧化行为, 材料研究学报, 2020, 34(7): 535
12 Huang H, Wu Y, He J, et al. Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29(30): 1701678
13 G M S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng. A, 2012, 532: 480
14 Du B, Sheng L, Cui C, et al. Precipitation and evolution of grain boundary boride in a nickel-based superalloy during thermal exposure [J]. Mater. Charact., 2017, 128: 109
15 Ma Y L, Liu Y, Zhang L P, et al. Effect of B content on morphology and properties of BN phase in martensite heat resistant steel [J]. Chin. J. Mater. Res., 2017, 31(5): 345
马煜林, 刘越, 张莉萍等. B含量对马氏体耐热钢中BN相形态及性能的影响 [J]. 材料研究学报, 2017, 31(5): 345
16 Seol J B, Bae J W, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta. Mater., 2018, 151: 366
17 Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
18 Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition [J]. Metallurgical and Materials Transactions A, 2004, 35(5): 1465
19 Cheng W C, Chang J J M C. Complex Widmansttten plates consisting of cementite and ferrite, product phases of a eutectoid reaction, in an Fe-C-Mn alloy [J]. Mater. Charact., 2013, 77: 53
20 Singh R, Bind A, Singh J, et al. Development and characterization of microstructure and mechanical properties of heat-treated Zr-2.5Nb alloy for AHWR pressure tubes [J]. Mater. performance. charact., 2013, 2(1): 120
21 Tan H, Guo M, Clare A T, et al. Microstructure and properties of Ti-6Al-4V fabricated by low-power pulsed laser directed energy deposition [J]. J. Mater. Sci., 2019, 3: 2027
22 Herrera C, Ponge D, Raabe D J A M. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta. Mater., 2011, 59(11): 4653
23 Sun F, Zhang J, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta. Mater., 2013, 61(17): 6406
24 Li Z, Körmann F, Grabowski B, et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity [J]. Acta. Mater., 2017, 136: 262
25 Behravan A, Zarei-Hanzaki A, Ghambari M, et al. Correlation between warm deformation characteristics and mechanical properties of a new TRIP-assisted Fe-MN-Ni steel [J]. Mater. Sci. Eng, A., 2015, 649: 27
26 Morsi K, Patel V. Processing and properties of titanium-titanium boride (TiBw) matrix composites-a review [J]. J. Mater. Sci., 2007, 42(6): 2037
27 Singh G, Ramamurty U. Boron modified titanium alloys [J]. Progr. Mater. Sci., 2020, 100653
28 Li G, Liu M, Wang H, et al. Effect of the Rare Earth Element Yttrium on the Structure and Properties of Boron-Containing High-Entropy Alloy [J]. JOM, 2020, 72: 2332
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!