Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 683-690    DOI: 10.11901/1005.3093.2020.044
ARTICLES Current Issue | Archive | Adv Search |
Transparent MSe2@N-doped Carbon Film as a Cathode for Co(Ⅲ/Ⅱ)-mediated Bifacial Dye-sensitized Solar Cells
OU Jinhua1, HU Bonian1, WANG Wei1, HAN Yu2,3()
1. Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
3. Liaoning Province Building Science Research Institute Co. Ltd., Shenyang 110005, China
Cite this article: 

OU Jinhua, HU Bonian, WANG Wei, HAN Yu. Transparent MSe2@N-doped Carbon Film as a Cathode for Co(Ⅲ/Ⅱ)-mediated Bifacial Dye-sensitized Solar Cells. Chinese Journal of Materials Research, 2020, 34(9): 683-690.

Download:  HTML  PDF(8931KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transparent MSe2@N-doped carbon film was synthesized using a metal metalloporphyrin (M-TCPP, M=Ni,Fe) thin film as a template in the presence of selenium powder in nitrogen atmosphere, and the MSe2@N-doped carbon film was used as the counter electrode (CE) in Co-mediated bifacial dye-sensitized solar cells (DSSCs). The morphology, structure and electrochemical performance of MSe2@NCF were characterized, while the difference of charge transfer process and photovoltaic performance of the cells was discussed when irradiated at the front and rear of the DSSC. The NiSe2@N-doped carbon film achieves admirable PCEs of 8.19% and 6.02% when irradiated at the front and rear of the device, respectively, which is comparable performance to that of a cell with a Pt CE (PCEs of 8.46% and 6.23%).

Key words:  composite      dye-sensitized dolar cells      layer-by-layer self-assembly method      counter electrode      NiSe2      FeSe2     
Received:  13 February 2020     
ZTFLH:  TK513.5  
Fund: National Natural Science Foundation of China(51974115);Research Foundation of Education Bureau of Hunan Province(19B143)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.044     OR     https://www.cjmr.org/EN/Y2020/V34/I9/683

Fig.1  XRD patterns of MSe2@NCF (a) NiSe2@NC, (b) FeSe2@NC
Fig.2  SEM images of FTO (a), NiSe2@NCF (b), FeSe2@NCF (c) and TEM images of NiSe2@NCF (d), FeSe2@NCF (e)
Fig.3  XPS spectra of NiSe2@NCF: (a) C1s, (b) N1s, (c) Ni2p, (d) Se3d, and FeSe2@NCF: (e) C1s, (f) N1s, (g) Fe2p, (h) Se3d
Fig.4  J-V curves of DSSCs using MSe2@NCF (a) front-side irradiation; (b) rear-side irradiation; (c) UV-vis transmittance spectrums of MSe2@NCF and Pt film; (d) UV-vis curves of Co2+/Co3+ and I3-/I- electrolyte
CEIrradiationVOC/VJSC/mA·cm-2FF/%PCE/%
PtFront0.8713.9269.978.46
Rear0.8510.3071.086.23
NiSe2@NCFFront0.8813.4668.568.19
Rear0.869.7371.726.02
FeSe2@NCFFront0.8812.7566.437.47
Rear0.859.1369.865.44
Table 1  Photovoltaic parameters of DSSC using various MSe2@NCF CEs
Fig.5  Nyquist plots of symmetrical cells with various CEs
CERs/Ω·cm2Rct /Ω·cm2ZN /Ω·cm2
Pt17.863.853.14
NiSe2@NCF17.534.813.37
FeSe2@NCF17.955.543.48
Table 2  EIS parameters of DSSC with various CEs
Fig.6  Tafel curves of symmetrical cells fabricated with various CEs
[1] Ahmad M S, Pandey A K, Rahim N A. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review [J]. Renew. Sust. Energ. Rev., 2017, 77: 89
[2] Sugathan V, John E, Sudhakar K. Recent improvements in dye sensitized solar cells: A review [J]. Renew. Sust. Energ. Rev., 2015, 52: 54
[3] Chen M, Shao L L. Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells [J]. Chem. Eng. J., 2016, 304: 629
[4] Meyer E, Bede A, Zingwe N, et al. Metal sulphides and their carbon supported composites as Platinum-free counter electrodes in dye-sensitized solar cells: a review [J]. Materials, 2019, 12: 1980
[5] Ponken T, Tagsin K, Suwannakhun C, et al. Preparation of platinum (Pt) Counter electrode coated by electrochemical technique at high temperature for dye-sensitized solar cell (DSSC) application [J]. J. Phys., 2017, 901: 012084
[6] Ou J H, Xiang J, Liu J X, et al. Surface-supported metal-organic framework thin-film-derived transparent CoS1.097@ N-doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 11: 14862
[7] Duan Y Y, Tang Q W, He B L, et al. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency [J]. Nanoscale, 2014, 6: 12601
doi: 10.1039/c4nr03900a pmid: 25185939
[8] Ito S, Zakeeruddin S M, Comte P, et al. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte [J]. Nat. Photon., 2008, 2: 693
[9] Bisquert J. Photovoltaics: the two sides of solar energy [J]. Nat. Photon., 2008, 2: 648
[10] Fu Y P, Lv Z B, Hou S C, et al. TCO‐free, flexible, and bifacial dye‐sensitized solar cell based on low‐cost metal wires [J]. Adv. Energy Mater., 2012, 2: 37
[11] Duan Y Y, Tang Q W, He B L, et al. Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes [J]. J. Power Sour., 2015, 284: 349
[12] Ou J H, Liang J, Xiang J, et al. Highly transparent nickel and iron sulfide on nitrogen-doped carbon films as counter electrodes for bifacial quantum dot sensitized solar cells [J]. Sol. Energy, 2019, 193: 766
[13] Wu J H, Li Y, Tang Q W, et al. Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode [J]. Sci. Rep., 2014, 4: 4028
doi: 10.1038/srep04028 pmid: 24504117
[14] Xu S J, Luo Y F, Liu G W, et al. Bifacial dye-sensitized solar cells using highly transparent PEDOT: PSS films as counter electrodes [J]. Electrochim. Acta, 2015, 156: 20
[15] Kim C K, Ji J M, Zhou H R, et al. Tellurium-doped, mesoporous carbon nanomaterials as transparent metal-free counter electrodes for high-performance bifacial dye-sensitized solar cells [J]. Nanomaterials, 2020, 10: 29
[16] Yun S N, Liu Y F, Zhang T H, et al. Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells [J]. Nanoscale, 2015, 7: 11877
pmid: 26132719
[17] Kavan L, Yum J H, Graetzel M. Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide [J]. ACS Appl. Mater. Interfaces, 2012, 4: 6999
doi: 10.1021/am302253e pmid: 23182034
[18] Gao C J, Han Q J, Wu M X. Review on transition metal compounds based counter electrode for dye-sensitized solar cells [J]. J. Energy Chem., 2018, 27: 703
[19] Ou J H, Gong C H, Wang M, et al. Highly efficient ZIF-8/graphene oxide derived N-doped carbon sheets as counter electrode for dye-sensitized solar cells [J]. Electrochim. Acta, 2018, 286: 212
[20] Gong F, Wang H, Xu X, et al. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells [J]. J. Am. Chem. Soc., 2012, 134: 10953
doi: 10.1021/ja303034w pmid: 22713119
[21] Hezam A, Namratha K, Drmosh Q A, et al. Electronically semitransparent ZnO nanorods with superior electron transport ability for DSSCs and solar photocatalysis [J]. Ceram. Int., 2018, 44: 7202
[22] Han C L, Wang J, Gong Y T, et al. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium [J]. J. Mater. Chem., 2014, 2A: 605
[23] Ma X, Zhang L, Xu G C, et al. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors [J]. Chem. Eng. J., 2017, 320: 22
[24] Du Y S, Cheng G Z, Luo W. NiSe2/FeSe2 nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction [J]. Catal. Sci. Technol., 2017, 7: 4604
[25] Xu H J, Wang B K, Shan C F, et al. Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst [J]. ACS Appl. Mater. Interfaces, 2018, 10: 6336
doi: 10.1021/acsami.7b17939 pmid: 29384365
[26] Chen T, Li S Z, Wen J, et al. Rational construction of hollow core‐branch CoSe2 nanoarrays for high‐performance asymmetric supercapacitor and efficient oxygen evolution [J]. Small, 2018, 14: 1700979
doi: 10.1002/smll.v14.5
[27] Liu T T, Asiri A M, Sun X P. Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting [J]. Nanoscale, 2016, 8: 3911
doi: 10.1039/c5nr07170d pmid: 26866797
[28] Li D J, Maiti U N, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction [J]. Nano Lett., 2014, 14: 1228
doi: 10.1021/nl404108a pmid: 24502837
[29] Gong J W, Sumathy K, Qiao Q Q, et al. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends [J]. Renew. Sust. Energ. Rev., 2017, 68: 234
[30] Gunasekera S S B, Perera I R, Gunathilaka S S. Conducting polymers as cost effective counter electrode material in dye-sensitized solar cells [A]. Solar Energy [C]. Singapore: Springe, 2020: 345
[31] Silambarasan K, Archana J, Athithya S, et al. Hierarchical NiO@NiS@ graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell [J]. Appl. Surf. Sci., 2020, 501: 144010
[32] Ou J H, Gong C H, Xiang J, et al. Noble metal-free Co@N-doped carbon nanotubes as efficient counter electrode in dye-sensitized solar cells [J]. Sol. Energy, 2018, 174: 225
[33] Makhlouf M M, Abdulkarim S, Adam M S S, et al. Unraveling urea pre-treatment correlated to activate Er2(WO4)3 as an efficient and stable counter electrode for dye-sensitized solar cells [J]. Electrochim. Acta, 2020, 333: 135540
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!