Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 247-253    DOI: 10.11901/1005.3093.2019.453
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Longitudinally Profiled EH40 Steel Plate
LI Guanglong1,2(), LI Jingnian3, LI Wenbin1,2, YAN Ling1,2, ZHANG Peng1,2, WANG Xiaohang1,2
1.State Key Laboratory of Metal Materials for Marine Equipment and Applications, Anshan 114009, China
2.Ansteel Iron & Steel Research Institute, Anshan 114009, China
3.Bayuquan Iron & Steel Subsidiary Company of Angang Steel Co. Ltd. , Yingkou 115007, China
Cite this article: 

LI Guanglong, LI Jingnian, LI Wenbin, YAN Ling, ZHANG Peng, WANG Xiaohang. Microstructure and Properties of Longitudinally Profiled EH40 Steel Plate. Chinese Journal of Materials Research, 2020, 34(4): 247-253.

Download:  HTML  PDF(8963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical properties of the longitudinally profiled EH40 steel plate with the specification of (30~50) mm×2600 mm×3000 mm were investigated by means of tensile test, impact test, hardness test, optical microscope and TEM. Results show that the microstructure and mechanical properties of the longitudinally profiled steel plate is diverse due to the experienced different processes of the thin end and thick end. As the thickness of the steel plate increases the yield strength decreases from 534 MPa to 489 MPa, while the tensile strength decreases from 599 MPa to 569 MPa. When the impact temperature is -60oC, the absorb energy is over 200 J for the thin end of steel plate, while the absorb energy fluctuates for the thick end. The grains of the thick end with lower bainite content are larger than those of the thin end. There is Bainite within the full cross section for where with the plates of 30 mm and 40 mm in thickness. However, all the bainite disappeared for where with the plates of 8 mm and 50 mm in thickness. The precipitated phases of both the thin ends and thick ends are (Nb, Ti)C. For the plate at the thin ends, there exists large amount of precipitated phases with small particle size, whereas small amount of precipitated phases with large size for that at the thick ends.

Key words:  metallic materials      longitudinally profiled steel plate      reduction ratio      finishing temperature      cooling rate      microstructure distribution     
Received:  23 September 2019     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(No. 2016YFF0202200);“Thirteenth Five” National Key Project(No. 2018YFC0705503-5)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.453     OR     https://www.cjmr.org/EN/Y2020/V34/I4/247

Fig.1  Longitudinal shape schematic diagram of LP steel plate
LocationTensile propertiesKv2/J
ReH/MPaRm/MPaA/%-20℃-40℃-60℃
ThinNear surface53459922.5297326301291289315276229252
MiddleNear surface51559025.5283300295280282290210225243
ThickNear surface50458625.028029729025928629524581187
Center48956927.527927328327526227017634151
Standard≥390510~660≥20.0≥41
Table 1  Mechanical properties of LP steel plate
Fig.2  LP Steel plate tensile properties at different position(a) strength; (b) elongation
Fig.3  Impact test curve of LP steel plate at different position at different temperature
Fig.4  Hardness at cross sections at different location of LP steel plate
Fig.5  Microstructure of LP steel plate at different position. a1, b1, c1-respectively at surface of thin end, middle position and thick end; a2, b2, c2-respectively at 1/4 thickness of thin end, middle position and thick end; a3, b3, c3-respectively at center of thin end, middle position and thick end
Fig.6  TEM images of LP steel plate at different position (a) thin end; (b) thick end
[1] Du P, Hu X L, Wang J, et al. Development and application of longitudinal profiled plate [J]. Steel Roll., 2008, 25(1): 47
(杜平, 胡贤磊, 王君等. 纵向变截面钢板的发展和应用 [J]. 轧钢, 2008, 25(1): 47)
[2] Fukumoto Y, Takaku T, Aoki T, et al. Innovative use of profiled steel plates for seismic structural performance [J]. Adv. Struct. Eng., 2005, 8: 247
[3] Aoki A, Takaku T, Fukumoto Y, et al. Experimental investigation for seismic performance of framed structures having longitudinally profiled plates [J]. J. Construct. Steel Res., 2008, 64: 875
[4] Fukumoto Y, Nagai M. Steel bridges: New steels and innovative erection methods [J]. Prog. Struct. Eng. Mater., 2000, 2: 34
[5] Suzuki S, Muraoka R, Obinata T, et al. Steel products for shipbuilding [J]. JFE Technical Report, 2004, 2: 41
[6] Du P, Hu X L, Wang J, et al. Rolling parameters for longitudinal profiled plate rolling process [J]. J. Iron. Steel Res., 2008, 20(12): 26
(杜平, 胡贤磊, 王君等. 纵向变截面轧制过程中的轧制参数 [J]. 钢铁研究学报, 2008, 20(12): 26)
[7] Wang Y Q, Liu X L, Liu M, et al. Experimental research on mechanical properties of longitudinally profiled steel plate [J]. Steel Construct., 2017, 32(4): 16
(王元清, 刘晓玲, 刘明等. 纵向变厚度钢板力学性能试验研究 [J]. 钢结构, 2017, 32(4): 16)
[8] Zhang K, Zhao S Y, Sui F L, et al. Effect of finish rolling temperature on microstructure evolution and hardness of Ti-V-Mo complex microalloyed steel [J]. Chin. J. Mater. Res., 2019, 33(3): 191
(张可, 赵时雨, 隋凤利等. 终轧温度对Ti-V-Mo复合微合金钢组织演变和硬度的影响 [J]. 材料研究学报, 2019, 33(3): 191)
[9] Saastamoinen A, Kaijalainen A, Porter D, et al. The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel [J]. Mater. Charact., 2018, 139: 1
[10] Duan L N, Chen Y, Liu Q Y, et al. Effect of thermo-mechanical control process on microstructure of high strength X100 pipeline steel [J]. Chin. J. Mater. Res., 2014, 28: 51
(段琳娜, 陈宇, 刘清友等. 控轧控冷工艺对高强度X100管线钢组织的影响 [J]. 材料研究学报, 2014, 28: 51)
[11] Efron L I, Morozov Y D, Goli-Oglu E A. Influence of rolling temperature on the austenite structure and properties of low-carbon microalloyed steel [J]. Steel Transl., 2012, 42: 456
[12] Sun F Y, Xu W C. Calculation of yield strength of Nb-V microalloy steel controlled-rolled into dual-phase γ+α [J]. Acta Metall. Sin., 1986, 22: 115
[13] Kong C M, Cai Q W, Yu W. Analysis of precipitation phase in grade X70 pipeline steel [J]. J. Mater. Metall., 2004, 3: 67
(孔萃敏, 蔡庆伍, 余伟. X70管线钢中析出相的分析 [J]. 材料与冶金学报, 2004, 3: 67)
[14] Xie B S, Cai Q W, Yu W, et al. Influence of fast cooling on properties of a Q420E plate steel [J]. Trans. Mater. Heat Treat., 2014, 35(3): 97
[15] Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
[16] Okamoto R, Borgenstam A, Ågren J. Interphase precipitation in niobium-microalloyed steels [J]. Acta Mater., 2010, 58: 4783
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!