Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 241-246    DOI: 10.11901/1005.3093.2019.177
ARTICLES Current Issue | Archive | Adv Search |
Effect of Shell Thickness on Expanding Fracture Behavior of HR2 Steel Cylinders under Explosive Loading
LU Qiuhong1(), WANG Ning2, FAN Cheng3, SHEN Yongfeng2, LIU Mingtao3, TANG Tiegang3, HU Haibo3
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3.Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Cite this article: 

LU Qiuhong, WANG Ning, FAN Cheng, SHEN Yongfeng, LIU Mingtao, TANG Tiegang, HU Haibo. Effect of Shell Thickness on Expanding Fracture Behavior of HR2 Steel Cylinders under Explosive Loading. Chinese Journal of Materials Research, 2020, 34(4): 241-246.

Download:  HTML  PDF(11076KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To clarify the fracture mechanism of metal cylinder under explosive loading, HR2 steel cylinders with shell of 6 and 12 mm in thickness respectively were subjected to explosive loading. The fracture fragments were collected after explosion, and then systematically investigated in terms of macroscopic morphology, fracture morphology and deformation microstructure. It is found that when the shell thickness increases, the fracture mode of HR2 cylinder changed from shearing fracture to the mixture of shearing fracture and tensile fracture. The deformation microstructure observation indicates that the failure and fracture of cylinder shell are the result of the combination and competition of cracks-nucleating and -expanding from the shear band and from the outer surface. The fracture of thin cylinder is dominant by the cracks nucleating and expanding from the shear band, presenting shearing fracture mode. The fracture of thick cylinder is the combined action of cracks-nucleating and -expanding from the shear band and from the outer surface, presenting a mode of mixture of shear- and tensile-fracture.

Key words:  metallic materials      HR2 steel      explosive loading      expanding fracture      microstructure      shear bands      fracture mechanism     
Received:  28 March 2019     
ZTFLH:  TG142  
Fund: National Nature Science Foundtion of China(No. U1530146);National Nature Science Foundtion of China(No. 11602249);National Nature Science Foundtion of China(No. U1730140)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.177     OR     https://www.cjmr.org/EN/Y2020/V34/I4/241

CSiMnPSNiCrN
<0.04<1.008.00~10.00<0.025<0.0155.50~8.0019.00~21.500.20~0.34
Table 1  Chemical compositions of HR2 steel (mass fraction, %)
Fig.1  Microstructure in the internal (a) and near the outer surface (b) of as-annealed HR2 steel cylinder
Fig.2  Schematic diagram of explosive device
Fig.3  Macroscopic morphology (a), (d), fracture morphology (b), (e) of fracture fragments and the schematic diagram of fracture mode (c), (f) in thin-walled and thick-walled HR2 steel cylinder respectively
Fig.4  Cross sectional observation of microscopic morphology inside the HR2 steel cylinder (a), near the outer surface (b) of thin-wall shell fragments and near the outer surface of thick-walled cylinder fragments after exploding
Fig.5  Cross-section TEM images of nanoscaled twins (a), coarse twins (b) and dislocation structures (c) in the thin-walled HR2 steel cylinder after exploding
Fig.6  Hardness variation of the fracture fragments along radial direction
Fig.7  The schematic diagram of compressive stress and tensile stress in an expansion cylinder
[1] Taylor G I. The Fragmentation of Tubular Bombs [A]. Scientific papers of G. I. Taylor, vol. III. [C]. Cambridge: Cambridge University Press; 1963
[2] Hoggatt C R, Recht R F. Fracture behavior of tubular bombs [J]. J. Appl. Phys., 1968, 39(3): 1856
doi: 10.1063/1.1656442
[3] Martineau R L, Anderson C A, Smith F W. Expansion of cylindrical shells subjected to internal explosive detonations [J]. Exp. Mech., 2000, 40(2): 219
doi: 10.1007/BF02325049
[4] Grady D E and Kipp M E. Dynamic Fracture and Fragmentation [J]. J. Mech. Phys. Solids., 1987, 35: 95
doi: 10.1016/0022-5096(87)90030-5
[5] Liu M., Li Y., Hu H., Hu X.. A numerical model for adiabatic shear bands with application to a thick-walled cylinder in 304 stainless steel [J]. Model. Simul. Mater. Sc. 2014, 1: 22
[6] Tang T G, Li Q Z, Sun X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation, Expl. Shock Wave, 2006, 26(2): 129
doi: 10.1007/s00193-015-0586-z
(汤铁钢, 李庆忠, 孙学林等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129)
[7] Hong L, Zuo X R, Ji Y L, et al. Impact fracture behavior of X80 pipeline steel [J]. Acta. Metall. Sin., 2010, 46(5): 533
doi: DOI: 10.3724/SP.J.1037.2009.00461
(洪良, 左秀荣, 姬颍伦等. X80厚规格X80 管线钢低温断裂行为研究 [J]. 材料研究学报, 2018, 32(1): 33)
doi: 10.11901/1005.3093.2016.791
[8] Lovinger Z, Rikanati A, Rosenberg Z, et al. Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization [J]. Int. J Impact Eng., 2011, 38(11): 918
doi: 10.1016/j.ijimpeng.2011.06.006
[9] Grady D E. Adiabatic shear failure in brittle solids [J]. Int. J Impact Eng., 2011. 38(7): 661
doi: 10.1016/j.ijimpeng.2011.01.001
[10] Luo S, You Z, Lu L. Thickness effect on fracture behavior of columnar-grained Cu with preferentially oriented nanoscale twins [J]. J. Mater. Res, 2017, 32(24): 4554
doi: 10.1557/jmr.2017.309
[11] Kale A B, Bag A, Hwang J H, et al. The deformation and fracture behaviors of 316L stainless steels fabricated by spark plasma sintering technique under uniaxial tension [J]. Mater. sci. Eng. A, 2017, 707: 362
doi: 10.1016/j.msea.2017.09.058
[12] Wang S J, Sui M L. {332} twins in shock-loaded pure iron [J]. Journal of Chinese Electron Microscopy Society, 2013, 32(4): 308
(王淑娟, 隋曼龄. 冲击加载α-Fe中的{332}孪晶 [J]. 电子显微学报, 2013, 32(4): 308)
[13] Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Mater. sci. Eng. A, 2001, 317: 204
doi: 10.1016/S0921-5093(01)01160-1
[14] Wang S J, Sui M L, Chen Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Sci. Rep., 2013, 3
doi: 10.1038/srep01086 pmid: 23336068
[15] Lee W S, Lin C F, Chen T H, et al. Effects of prestrain on high temperature impact properties of 304L stainless steel [J]. J. Mater. Res., 2010, 25(4): 754
doi: 10.1557/JMR.2010.0088
[16] Qi M L, Qin X Y, Zhang L, et al. Micromechanism of the dynamic damage and spallation of HR2 steel [J]. Ordnance Material Science and Engineering, 2006, 29(3): 33
(祁美兰, 秦晓云, 张林等. HR2钢动态损伤与层裂的微观机理 [J]. 兵器材料科学与工程, 2006, 29(3): 33)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
No Suggested Reading articles found!