|
|
Effect of Shell Thickness on Expanding Fracture Behavior of HR2 Steel Cylinders under Explosive Loading |
LU Qiuhong1( ), WANG Ning2, FAN Cheng3, SHEN Yongfeng2, LIU Mingtao3, TANG Tiegang3, HU Haibo3 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3.Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China |
|
Cite this article:
LU Qiuhong, WANG Ning, FAN Cheng, SHEN Yongfeng, LIU Mingtao, TANG Tiegang, HU Haibo. Effect of Shell Thickness on Expanding Fracture Behavior of HR2 Steel Cylinders under Explosive Loading. Chinese Journal of Materials Research, 2020, 34(4): 241-246.
|
Abstract To clarify the fracture mechanism of metal cylinder under explosive loading, HR2 steel cylinders with shell of 6 and 12 mm in thickness respectively were subjected to explosive loading. The fracture fragments were collected after explosion, and then systematically investigated in terms of macroscopic morphology, fracture morphology and deformation microstructure. It is found that when the shell thickness increases, the fracture mode of HR2 cylinder changed from shearing fracture to the mixture of shearing fracture and tensile fracture. The deformation microstructure observation indicates that the failure and fracture of cylinder shell are the result of the combination and competition of cracks-nucleating and -expanding from the shear band and from the outer surface. The fracture of thin cylinder is dominant by the cracks nucleating and expanding from the shear band, presenting shearing fracture mode. The fracture of thick cylinder is the combined action of cracks-nucleating and -expanding from the shear band and from the outer surface, presenting a mode of mixture of shear- and tensile-fracture.
|
Received: 28 March 2019
|
|
Fund: National Nature Science Foundtion of China(No. U1530146);National Nature Science Foundtion of China(No. 11602249);National Nature Science Foundtion of China(No. U1730140) |
[1] |
Taylor G I. The Fragmentation of Tubular Bombs [A]. Scientific papers of G. I. Taylor, vol. III. [C]. Cambridge: Cambridge University Press; 1963
|
[2] |
Hoggatt C R, Recht R F. Fracture behavior of tubular bombs [J]. J. Appl. Phys., 1968, 39(3): 1856
doi: 10.1063/1.1656442
|
[3] |
Martineau R L, Anderson C A, Smith F W. Expansion of cylindrical shells subjected to internal explosive detonations [J]. Exp. Mech., 2000, 40(2): 219
doi: 10.1007/BF02325049
|
[4] |
Grady D E and Kipp M E. Dynamic Fracture and Fragmentation [J]. J. Mech. Phys. Solids., 1987, 35: 95
doi: 10.1016/0022-5096(87)90030-5
|
[5] |
Liu M., Li Y., Hu H., Hu X.. A numerical model for adiabatic shear bands with application to a thick-walled cylinder in 304 stainless steel [J]. Model. Simul. Mater. Sc. 2014, 1: 22
|
[6] |
Tang T G, Li Q Z, Sun X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation, Expl. Shock Wave, 2006, 26(2): 129
doi: 10.1007/s00193-015-0586-z
|
|
(汤铁钢, 李庆忠, 孙学林等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129)
|
[7] |
Hong L, Zuo X R, Ji Y L, et al. Impact fracture behavior of X80 pipeline steel [J]. Acta. Metall. Sin., 2010, 46(5): 533
doi: DOI: 10.3724/SP.J.1037.2009.00461
|
|
(洪良, 左秀荣, 姬颍伦等. X80厚规格X80 管线钢低温断裂行为研究 [J]. 材料研究学报, 2018, 32(1): 33)
doi: 10.11901/1005.3093.2016.791
|
[8] |
Lovinger Z, Rikanati A, Rosenberg Z, et al. Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization [J]. Int. J Impact Eng., 2011, 38(11): 918
doi: 10.1016/j.ijimpeng.2011.06.006
|
[9] |
Grady D E. Adiabatic shear failure in brittle solids [J]. Int. J Impact Eng., 2011. 38(7): 661
doi: 10.1016/j.ijimpeng.2011.01.001
|
[10] |
Luo S, You Z, Lu L. Thickness effect on fracture behavior of columnar-grained Cu with preferentially oriented nanoscale twins [J]. J. Mater. Res, 2017, 32(24): 4554
doi: 10.1557/jmr.2017.309
|
[11] |
Kale A B, Bag A, Hwang J H, et al. The deformation and fracture behaviors of 316L stainless steels fabricated by spark plasma sintering technique under uniaxial tension [J]. Mater. sci. Eng. A, 2017, 707: 362
doi: 10.1016/j.msea.2017.09.058
|
[12] |
Wang S J, Sui M L. {332} twins in shock-loaded pure iron [J]. Journal of Chinese Electron Microscopy Society, 2013, 32(4): 308
|
|
(王淑娟, 隋曼龄. 冲击加载α-Fe中的{332}孪晶 [J]. 电子显微学报, 2013, 32(4): 308)
|
[13] |
Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Mater. sci. Eng. A, 2001, 317: 204
doi: 10.1016/S0921-5093(01)01160-1
|
[14] |
Wang S J, Sui M L, Chen Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Sci. Rep., 2013, 3
doi: 10.1038/srep01086
pmid: 23336068
|
[15] |
Lee W S, Lin C F, Chen T H, et al. Effects of prestrain on high temperature impact properties of 304L stainless steel [J]. J. Mater. Res., 2010, 25(4): 754
doi: 10.1557/JMR.2010.0088
|
[16] |
Qi M L, Qin X Y, Zhang L, et al. Micromechanism of the dynamic damage and spallation of HR2 steel [J]. Ordnance Material Science and Engineering, 2006, 29(3): 33
|
|
(祁美兰, 秦晓云, 张林等. HR2钢动态损伤与层裂的微观机理 [J]. 兵器材料科学与工程, 2006, 29(3): 33)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|